请帮我说明这段代码并未成功创建出8个npc车辆的原因 batch = [] npc_blueprints = ["vehicle.nissan.micra", "vehicle.audi.a2", "vehicle.tesla.model3", "vehicle.bmw.grandtourer", "vehicle.toyota.prius", "vehicle.nissan.patrol", "vehicle.audi.etron", "vehicle.toyota.prius"] npc_speeds = [20, 25, 30, 35, 40, 35, 30, 20] # in km/h npc_accelerations = [1.0, 1.5, 2.0, 2, 2.0, 1.5, 1.0, 1.5] # in m/s^2 npc_waypoints = [[-8871.099609, -11956.523438, 27.530716], [-8504.081055, -5407.712402, 27.530716], [6426.287598, 741.497681, 45.0], [10597.994141, -339.751038, 27.530716], [9715.866211, 430.881317, 27.530716], [17607.03125, -240.132263, 27.530716], [20708.113281, -518.995544, 27.531448], [24519.421875, 2809.513916, 27.530716]] for i in range(8): blueprint = world.get_blueprint_library().find(npc_blueprints[i]) color = random.choice(blueprint.get_attribute('color').recommended_values) blueprint.set_attribute('color', color) if blueprint.has_attribute('driver_id'): driver_id = random.choice(blueprint.get_attribute('driver_id').recommended_values) blueprint.set_attribute('driver_id', driver_id) blueprint.set_attribute('role_name', 'autopilot') transform = carla.Transform( carla.Location(x=npc_waypoints[i][0], y=npc_waypoints[i][1], z=npc_waypoints[i][2]), carla.Rotation(yaw=0)) print('aaaaa') # prepare the light state of the cars to spawn light_state = vls.NONE if args.car_lights_on: light_state = vls.Position | vls.LowBeam | vls.LowBeam # spawn the cars and set their autopilot and light state all together batch.append(SpawnActor(blueprint, transform) .then(SetAutopilot(FutureActor, True, traffic_manager.get_port())) .then(SetVehicleLightState(FutureActor, light_state))) for response in client.apply_batch_sync(batch, synchronous_master): if response.error: logging.error(response.error) else: vehicles_list.append(response.actor_id) print("*********************************************") for vehicle_id in vehicles_list: print('vehicles_list',vehicles_list) print('vehicle_id',vehicle_id) print(world.get_actor(vehicle_id)) print(world.get_actor(vehicle_id).get_location()) print("****")
时间: 2024-04-02 10:33:12 浏览: 146
您提供的代码中,创建车辆的部分看起来是正确的。但是,我注意到您在循环中使用了未定义的变量 `FutureActor`,这可能导致错误。我建议您将 `FutureActor` 替换为 `response.actor_id`,以便在下一步操作中使用正确的车辆ID。
此外,您在循环中打印 `vehicles_list` 的值,这会在每次迭代时将整个列表打印出来。这可能会使输出变得混乱。相反,您可以在循环外打印 `vehicles_list` 的值以查看整个列表。
最后,如果您的代码仍然无法成功创建车辆,请提供更多上下文信息,例如是否有任何错误信息或日志输出。
相关问题
这段代码tf,conat时出现了问题for i in range(0, num_samples, batch_size): batch = x_data[i:i + batch_size] batch = tf.expand_dims(batch, axis=0) if i + batch_size > num_samples: batch_num = num_samples - i if batch_num == 1: feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num) else: feature_batch = model.predict(batch, batch_size=batch_num) tf.concat(features, axis=1) else: feature_batch = model.predict(batch, batch_size=batch_size) tf.concat(features, axis=1)
这段代码中有两个问题:
1. 在使用`tf.concat()`函数进行拼接时,没有将拼接后的结果重新赋值给`features`。因为`tf.concat()`函数返回的是拼接后的结果,需要将其重新赋值给`features`。修改后的代码如下:
```python
features = tf.concat([features, feature_batch], axis=1)
```
2. 在拼接之前,需要对`features`进行初始化。因为`features`是一个TensorFlow变量,需要使用`tf.Variable()`函数对其进行初始化。修改后的代码如下:
```python
features = tf.Variable(initial_value=tf.zeros((feature_shape, 0)), dtype=tf.float32)
```
综合修改后的代码如下:
```python
features = tf.Variable(initial_value=tf.zeros((feature_shape, 0)), dtype=tf.float32)
for i in range(0, num_samples, batch_size):
batch = x_data[i:i + batch_size]
batch = tf.expand_dims(batch, axis=0)
if i + batch_size > num_samples:
batch_num = num_samples - i
if batch_num == 1:
feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num)
else:
feature_batch = model.predict(batch, batch_size=batch_num)
features = tf.concat([features, feature_batch], axis=1)
else:
feature_batch = model.predict(batch, batch_size=batch_size)
features = tf.concat([features, feature_batch], axis=1)
```
希望能够帮到你!
User def __init__(self, primary_indices, secondary_indices, batch_size, secondary_batch_size): self.primary_indices = primary_indices self.secondary_indices = secondary_indices self.secondary_batch_size = secondary_batch_size self.primary_batch_size = batch_size - secondary_batch_size assert len(self.primary_indices) >= self.primary_batch_size > 0 assert len(self.secondary_indices) >= self.secondary_batch_size > 0代码解释
这段代码是一个Python类的构造函数,用于初始化对象的属性值。该类包含四个参数:
- primary_indices: 主要索引,是一个列表类型。
- secondary_indices: 次要索引,也是一个列表类型。
- batch_size: 批次大小,是一个整数类型。
- secondary_batch_size: 次要批次大小,也是一个整数类型。
在初始化对象时,会将以上四个参数传入构造函数中,并创建以下四个属性:
- self.primary_indices:用于存储主要索引。
- self.secondary_indices:用于存储次要索引。
- self.secondary_batch_size:用于存储次要批次大小。
- self.primary_batch_size:用于存储主要批次大小,其值为批次大小减去次要批次大小。
为了确保参数的合法性,代码中使用了两个assert语句进行断言,如果不满足条件,会抛出异常。第一个断言用于判断主要批次大小是否在主要索引的长度范围内,且大于0;第二个断言用于判断次要批次大小是否在次要索引的长度范围内,且大于0。
阅读全文