解释这段代码: def get_next(self): dataset = tf.data.Dataset.from_generator(self.generator, (tf.float32, tf.int32,tf.int32, tf.string)) dataset = dataset.repeat(self.epochs_num) #使用repeat()对数据进行扩充 if self.shuffle: dataset = dataset.shuffle(self.batch_size*3+200) dataset = dataset.batch(self.batch_size) iterator = dataset.make_one_shot_iterator() out_batch = iterator.get_next() return out_batch
时间: 2023-04-08 14:04:42 浏览: 455
这段代码的作用是创建一个 TensorFlow 数据集对象,其中包含了一个生成器函数 self.generator,该函数返回四个元素,分别是 tf.float32、tf.int32、tf.int32 和 tf.string 类型的数据。然后,将该数据集对象重复 self.epochs_num 次,以便在训练模型时可以多次使用该数据集。
相关问题
def _get_aviris(self): data = tf.data.Dataset.from_generator(self._aviris_generator, output_types = (tf.float32, tf.float32)) data = data.batch(self.batch_size) data = data.cache() data = data.prefetch(2) data = data.repeat() return data
这段代码是一个函数,函数名为 `_get_aviris`,该函数返回一个 TensorFlow 的数据集对象 `data`。这个数据集对象是通过调用 `tf.data.Dataset.from_generator` 方法创建的,它的数据来源是 `self._aviris_generator` 方法,该方法应该是一个生成器函数。
这个数据集对象 `data` 通过 `data.batch` 方法被分成批次,每个批次大小为 `self.batch_size`。接着,数据集被缓存到内存中,以便下次使用。然后,数据集对象被预取了 2 个批次的数据,以加速训练。最后,数据集对象被重复使用,以支持无限迭代获取数据。
class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.shuffle = shuffle def __iter__(self): if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def build_dataloader(dataset_cfg, class_names, batch_size, dist, root_path=None, workers=4, seed=None, logger=None, training=True, merge_all_iters_to_one_epoch=False, total_epochs=0): dataset = __all__[dataset_cfg.DATASET]( dataset_cfg=dataset_cfg, class_names=class_names, root_path=root_path, training=training, logger=logger, ) if merge_all_iters_to_one_epoch: assert hasattr(dataset, 'merge_all_iters_to_one_epoch') dataset.merge_all_iters_to_one_epoch(merge=True, epochs=total_epochs) if dist: if training: sampler = torch.utils.data.distributed.DistributedSampler(dataset) else: rank, world_size = common_utils.get_dist_info() sampler = DistributedSampler(dataset, world_size, rank, shuffle=False) else: sampler = None dataloader = DataLoader( dataset, batch_size=batch_size, pin_memory=True, num_workers=workers, shuffle=(sampler is None) and training, collate_fn=dataset.collate_batch, drop_last=False, sampler=sampler, timeout=0, worker_init_fn=partial(common_utils.worker_init_fn, seed=seed) ) return dataset, dataloader, sampler
这段代码是一个用于构建数据加载器的函数。它接受一些参数,包括数据集的配置、类别名称、批次大小、分布式训练标志、数据集的根路径等。
首先,根据数据集的配置和其他参数,创建一个数据集对象。
如果设置了 `merge_all_iters_to_one_epoch` 标志为 `True`,则调用数据集对象的 `merge_all_iters_to_one_epoch` 方法,将所有迭代器合并到一个周期中。
接下来,如果分布式训练标志为 `True`,则根据训练模式创建相应的采样器。对于训练模式,使用 `torch.utils.data.distributed.DistributedSampler` 创建采样器;对于非训练模式,根据当前进程的排名和世界大小创建 `DistributedSampler` 采样器,并设置 `shuffle` 参数为 `False`。
如果不是分布式训练,则采样器为 `None`。
最后,使用 `torch.utils.data.DataLoader` 创建数据加载器,传入数据集对象、批次大小、是否在训练模式下洗牌、数据集对象的 `collate_batch` 方法用于批量整理数据、是否丢弃最后一个批次、采样器以及其他参数。
函数返回数据集对象、数据加载器和采样器。
阅读全文