def get_batch_data(batch_size=batch_size): # 从tensor列表中按顺序或随机抽取一个tensor input_queue = tf.train.slice_input_producer([hrrp, labels], shuffle=False) hrrp_batch, label_batch = tf.train.batch(input_queue, batch_size=batch_size, num_threads=1, capacity=64) return hrrp_batch, label_batch [hrrp_batch, label_batch] = get_batch_data(batch_size=batch_size) def get_test_data(batch_size=batch_size): # 从tensor列表中按顺序或随机抽取一个tensor input_queue = tf.train.slice_input_producer([test_hrrp, test_labels], shuffle=False) hrrp_test, label_test = tf.train.batch(input_queue, batch_size=batch_size, num_threads=1, capacity=64) return hrrp_test, label_test [hrrp_test, label_test] = get_batch_data(batch_size=test_batch_size)所选择的特征是
时间: 2023-11-14 12:06:08 浏览: 293
在这段代码中,选择的特征是 hrrp,它是一个 tensor 列表。在 get_batch_data() 和 get_test_data() 函数中,采用 tf.train.slice_input_producer() 函数从 hrrp 和 labels 中按顺序或随机抽取一个 tensor,并使用 tf.train.batch() 函数将它们打包成一个批次数据,以供神经网络训练和测试使用。因此,hrrp 是所选择的特征之一,它是指通过无线电信号接收器获取的信号水平值。labels 是另一个特征,它是指每个输入样本对应的输出标签,用于评估神经网络的预测准确性。总的来说,这段代码是用于从数据集中获取特征和标签,并将它们打包成批次数据,以供神经网络训练和测试使用。
相关问题
def minibatch_set(feature, label, BATCH_SIZE, SHUFFLE): # feature = torch.from_numpy(feature) feature_tensor = torch.tensor(feature, dtype=torch.float32) # label = torch.from_numpy(label) label_tensor = torch.tensor(label, dtype=torch.float32) dataset = Data.TensorDataset(feature_tensor, label_tensor) loader = Data.DataLoader( dataset=dataset, # torch TensorDataset format batch_size=BATCH_SIZE, # mini batch size shuffle=SHUFFLE, # random shuffle for training drop_last=True, #当你的整个数据长度不能够整除你的batchsize,选择是否要丢弃最后一个不完整的batch,默认为False。 num_workers=0) return loader
这个函数`minibatch_set`是一个用于创建小批量数据集的函数。它使用PyTorch中的`DataLoader`和`TensorDataset`来实现。
函数接受四个参数:
- `feature`:特征数据,可以是一个Numpy数组。
- `label`:标签数据,可以是一个Numpy数组。
- `BATCH_SIZE`:小批量数据的大小。
- `SHUFFLE`:是否对数据进行随机洗牌。
函数内部首先将特征和标签转换为PyTorch的`Tensor`对象,使用`torch.tensor()`函数,并指定数据类型为`torch.float32`。
然后,使用`torch.utils.data.TensorDataset`将特征和标签合并为一个数据集对象。
接下来,使用`torch.utils.data.DataLoader`创建一个数据加载器,将数据集作为参数传入。你可以指定小批量数据的大小、是否进行洗牌以及其他参数。
最后,函数返回这个数据加载器对象,即小批量数据集。
你可以通过调用这个函数并传入合适的参数来创建自己的小批量数据集。例如:
```python
import torch
import torch.utils.data as Data
# 假设你有特征和标签数据
feature_data = ...
label_data = ...
# 定义小批量大小和是否洗牌
BATCH_SIZE = 32
SHUFFLE = True
# 创建小批量数据集
loader = minibatch_set(feature_data, label_data, BATCH_SIZE, SHUFFLE)
# 使用循环遍历小批量数据集
for batch_feature, batch_label in loader:
# 在这里进行训练或其他操作
...
```
这样,你就可以使用返回的`loader`对象来获取小批量的特征和标签数据,并将其用于训练或其他操作。
解释下面这段代码 def pad_sequence(seq_feature, batch_first=True, padding_value=0, max_len=966): """对长度不同于模型输入的音频进行padding或截断""" feature_shape = seq_feature.shape feat_len = feature_shape[0] if feat_len > max_len: # truncate to max length seq_feature = seq_feature[:max_len].unsqueeze(0) return seq_feature batch_size = 1 trailing_dims = feature_shape[1:] if batch_first: out_dims = (batch_size, max_len) + trailing_dims else: out_dims = (max_len, batch_size) + trailing_dims out_tensor = seq_feature.data.new(*out_dims).fill_(padding_value) if batch_first: out_tensor[0, :feat_len, ...] = seq_feature else: out_tensor[:feat_len, 0, ...] = seq_feature return out_tensor
这段代码是用于对长度不同于模型输入的音频进行padding或截断的。具体来说,它的输入是一个形状为(seq_len, feature_dim)的特征序列,其中seq_len表示该特征序列的长度,feature_dim表示每个特征向量的维度。该函数首先获取输入序列的长度feat_len,如果feat_len大于max_len,就将输入序列截断到max_len的长度。如果feat_len小于等于max_len,就对输入序列进行padding,使其长度等于max_len。padding使用的值为padding_value。
输出为形状为(batch_size, max_len, feature_dim)的张量,其中batch_size表示批大小,如果batch_first为True,则batch_size为1,特征序列在第二个维度上,即张量的形状为(batch_size, seq_len, feature_dim),否则特征序列在第一个维度上,即张量的形状为(seq_len, batch_size, feature_dim)。输出张量中,长度小于等于原始特征序列长度feat_len的部分是原始特征序列,其余部分都是padding_value。
阅读全文