什么是数据归一化? 归一化有什么作用? 还有其他常用的数据归一化方法吗?
时间: 2024-03-07 19:45:40 浏览: 144
使用sklearn进行对数据标准化、归一化以及将数据还原的方法
数据归一化是将数据按照一定的比例缩放,使其落入特定的范围内。它的作用是消除不同特征之间的量纲差异,使得数据在进行比较和分析时更加准确和可靠。
常用的数据归一化方法有以下几种:
1. 最小-最大归一化(Min-Max Scaling):将数据线性地映射到[0, 1]的范围内,公式为:x' = (x - min) / (max - min),其中x'是归一化后的值,x是原始值,min和max分别是数据集中的最小值和最大值。
2. Z-Score归一化(Standardization):将数据转化为均值为0,标准差为1的标准正态分布,公式为:x' = (x - mean) / std,其中x'是归一化后的值,x是原始值,mean和std分别是数据集的均值和标准差。
3. 小数定标归一化(Decimal Scaling):通过移动小数点的位置来实现归一化,公式为:x' = x / 10^k,其中x'是归一化后的值,x是原始值,k是使得数据集中绝对值的最大值小于1的整数。
4. 对数函数归一化(Logarithmic Scaling):通过对数据取对数来实现归一化,公式为:x' = log(x),其中x'是归一化后的值,x是原始值。
阅读全文