nn.MSELoss和crossentropyloss
时间: 2023-09-07 07:16:13 浏览: 154
nn.MSELoss和nn.CrossEntropyLoss是PyTorch中常用的损失函数。
nn.MSELoss是均方误差损失函数,用于回归问题。它计算预测值与目标值之间的平方差,并返回平均值。MSELoss可以用于训练模型预测连续值的任务,例如房价预测。
nn.CrossEntropyLoss是交叉熵损失函数,用于分类问题。它将模型输出的类别概率与真实标签之间的差异进行计算,并返回损失值。CrossEntropyLoss在多类别分类任务中使用广泛,例如图像分类。
需要注意的是,CrossEntropyLoss通常与softmax激活函数一起使用,以获得类别概率。而MSELoss不需要激活函数,直接用于回归任务。
在使用这些损失函数时,通常将其与优化器和其他组件一起使用,通过反向传播来更新模型的参数,以最小化损失函数的值。
相关问题
nn.MSEloss
nn.MSELoss是PyTorch中的一个损失函数,用于回归问题。它计算预测值与真实值之间的均方误差(Mean Squared Error)。均方误差是预测值与真实值之差的平方和的平均值。在PyTorch中,nn.MSELoss可以通过设置reduction参数来决定是否缩减维度以及如何缩减。其中,reduction参数有三个选项:
- "none":不缩减维度,输出结果与输入形状相同。
- "mean":将输出结果求平均,即将平方和除以输出元素的个数。
- "sum":将输出结果求和。
因此,nn.MSELoss可以根据具体需求选择合适的reduction参数来获得不同的损失值。例如,设置为"mean"可以得到平均均方误差,设置为"sum"可以得到总均方误差。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [【Pytorch基础】torch.nn.MSELoss损失函数](https://blog.csdn.net/zfhsfdhdfajhsr/article/details/115637954)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *2* [基于MSELoss()与CrossEntropyLoss()的区别详解](https://download.csdn.net/download/weixin_38589812/13760627)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
#模型 class Wine_net(nn.Module): def __init__(self): super(Wine_net, self).__init__() # self.ln1=nn.LayerNorm(11) self.fc1=nn.Linear(11,22) self.fc2=nn.Linear(22,44) self.fc3=nn.Linear(44,1) def forward(self,x): # x=self.ln1(x) x=self.fc1(x) x=nn.functional.relu(x) x=self.fc2(x) x=nn.functional.relu(x) x = self.fc3(x) x = nn.functional.softmax(x,dim=1) return x # 读取数据 df = pd.read_csv('winequality.csv') df1=df.drop('quality',axis=1) df2=df['quality'] # 将数据集分成10份 skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=42) # 遍历每一份数据,并训练模型 for train_index, test_index in skf.split(df1, df2): train_x, test_x = df1.iloc[train_index], df1.iloc[test_index] train_y, test_y = df2.iloc[train_index], df2.iloc[test_index] train_x = torch.tensor(train_x.values, dtype=torch.float32) train_y = torch.tensor(train_y.values, dtype=torch.float32) train_y = train_y.unsqueeze(1) # 定义模型、损失函数和优化器 model = Wine_net() loss_fn = nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=1) print(train_x) for epoch in range(1,10): # 前向传播 y_pred = model(train_x) # 计算损失 loss = loss_fn(y_pred, train_y) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() # 打印损失 print('Epoch:',epoch, 'Train Loss:', loss.item())
这段代码实现了一个简单的分类模型,使用 Wine 数据集进行训练。首先将数据集分成 10 份,然后遍历每一份数据,并使用该份数据进行训练。每一份数据都被分为训练集和测试集,其中训练集用于训练模型,测试集用于评估模型的性能。
在模型定义中,定义了一个名为 `Wine_net` 的神经网络模型,包含三个全连接层,输入特征的维度为 11,输出特征的维度为 22、44 和 1,其中前两个全连接层使用了激活函数 `ReLU`,输出层使用了 `softmax` 函数。
在训练过程中,使用了 MSE 损失函数和随机梯度下降(SGD)优化器,训练 10 个 epoch,每个 epoch 的训练损失都被打印出来。
需要注意的是,模型训练过程中,代码中使用了 `softmax` 函数,但是该函数应该在损失函数中使用。在这里,可以将输出层修改为不使用 `softmax` 函数,然后在损失函数中使用 `nn.CrossEntropyLoss()` 函数,这是一个包含了 `softmax` 函数的交叉熵损失函数。
阅读全文