nn.RNN如何反向传播

时间: 2023-11-15 07:48:33 浏览: 32
nn.RNN是PyTorch中的一个循环神经网络模块。在反向传播过程中,它的更新方法与其他神经网络模块相似,但有一些特殊的考虑因素。 首先,我们需要定义一个损失函数来度量模型输出与目标值之间的差异。常见的损失函数包括均方误差(MSE)和交叉熵损失(Cross-Entropy Loss)等。 然后,我们需要计算损失函数对于模型参数的导数,以便进行梯度下降更新。在PyTorch中,这可以通过调用`loss.backward()`来实现。 在反向传播过程中,RNN模块的主要考虑因素是序列的依赖关系。由于RNN是一种具有记忆能力的网络,它会将前一个时间步的隐藏状态作为输入传递给当前时间步。因此,在反向传播过程中,需要从后向前逐个时间步计算梯度。 具体来说,反向传播过程可以分为以下几个步骤: 1. 将模型参数的梯度初始化为零。 2. 对于每个时间步,计算当前时间步的损失函数对于模型输出的梯度。 3. 根据当前时间步的梯度,计算当前时间步的损失函数对于模型参数的梯度,并将其累加到之前的梯度中。 4. 将当前时间步的梯度传递到前一个时间步,并重复步骤2和步骤3,直到计算完所有时间步的梯度。 5. 根据累计的梯度更新模型参数。 需要注意的是,PyTorch中的`nn.RNN`模块已经封装了反向传播的实现,我们只需定义好损失函数并调用`loss.backward()`即可完成反向传播过程。同时,PyTorch还提供了各种优化器(如SGD、Adam等)来帮助我们更新模型参数。
相关问题

使用包含很多汉字拼音的文本文件1、实现基本循环神经网络模型,循环单元为nn.RNN或GRU 2、输出层的全连接使用RNN所有时间步的输出 3、隐状态初始值为0 4、测试前向传播 5、注意:如果采用顺序划分,需梯度截断 6、训练:损失函数为平均交叉熵 7、预测:给定一个前缀,进行单步预测和K步预测。 8、改变时间步数,测试对应的性能,并思考其原因。

好的,这是一个使用循环神经网络模型来处理拼音文本的任务。下面是一些参考代码和思路,供你参考: 1. 实现基本循环神经网络模型,循环单元为nn.RNN或GRU ```python import torch import torch.nn as nn class RNNModel(nn.Module): def __init__(self, input_size, hidden_size, output_size, num_layers, rnn_type='RNN'): super(RNNModel, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layers = num_layers self.rnn_type = rnn_type if rnn_type == 'RNN': self.rnn = nn.RNN(input_size, hidden_size, num_layers, batch_first=True) elif rnn_type == 'GRU': self.rnn = nn.GRU(input_size, hidden_size, num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, output_size) def forward(self, x, h=None): if h is None: h = torch.zeros(self.num_layers, x.size(0), self.hidden_size) out, h = self.rnn(x, h) out = self.fc(out) return out, h ``` 2. 输出层的全连接使用RNN所有时间步的输出 ```python # 在RNNModel中的forward函数中修改为 def forward(self, x, h=None): if h is None: h = torch.zeros(self.num_layers, x.size(0), self.hidden_size) out, h = self.rnn(x, h) out = out.contiguous().view(-1, self.hidden_size) out = self.fc(out) return out, h ``` 3. 隐状态初始值为0 ```python # 在RNNModel中的forward函数中修改为 def forward(self, x, h=None): if h is None: h = torch.zeros(self.num_layers, x.size(0), self.hidden_size) else: h = h.detach() out, h = self.rnn(x, h) out = out.contiguous().view(-1, self.hidden_size) out = self.fc(out) return out, h ``` 4. 测试前向传播 ```python # 假设已经加载了拼音文本数据,可以将拼音文本转化为对应的数值向量,然后进行前向传播 model.eval() h = None for i in range(len(input)): x = input[i].unsqueeze(0) # 将输入转化为batch_size=1的张量 out, h = model(x, h) # 然后可以对输出进行处理,例如计算损失或者进行预测 ``` 5. 采用顺序划分时,需要进行梯度截断 ```python model.train() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) criterion = nn.CrossEntropyLoss() for i in range(len(inputs)): optimizer.zero_grad() x = inputs[i] y = targets[i] h = None for j in range(len(x)): # 将输入和目标转化为张量 input_tensor = torch.tensor(x[j]).unsqueeze(0) target_tensor = torch.tensor(y[j]).unsqueeze(0) # 前向传播 output, h = model(input_tensor, h) # 计算损失 loss = criterion(output, target_tensor.view(-1)) # 反向传播 loss.backward() # 梯度截断 nn.utils.clip_grad_norm_(model.parameters(), max_norm=5) # 更新参数 optimizer.step() ``` 6. 训练时使用平均交叉熵作为损失函数 ```python # 在上面的代码中使用交叉熵损失函数 criterion = nn.CrossEntropyLoss() # 在每个batch训练结束后计算平均损失 total_loss = 0 for j in range(len(x)): # ... loss = criterion(output, target_tensor.view(-1)) total_loss += loss.item() average_loss = total_loss / len(x) ``` 7. 预测时可以给定一个前缀,进行单步预测和K步预测 ```python # 假设已经加载了拼音文本数据,可以将拼音文本转化为对应的数值向量,然后进行预测 model.eval() h = None prefix = ['b', 'a'] prefix_tensor = torch.tensor([vocab.stoi[ch] for ch in prefix]).unsqueeze(0) out, h = model(prefix_tensor, h) # 单步预测 _, topi = out[-1].topk(1) predicted_char = vocab.itos[topi.item()] # K步预测 k = 5 for i in range(k): input_tensor = torch.tensor(vocab.stoi[predicted_char]).unsqueeze(0).unsqueeze(0) out, h = model(input_tensor, h) _, topi = out[-1].topk(1) predicted_char = vocab.itos[topi.item()] print(predicted_char) ``` 8. 改变时间步数,测试对应的性能,并思考其原因 可以尝试改变时间步数,例如从单个字符预测改为预测两个字符,或者从预测两个字符改为预测三个字符等等。改变时间步数可能会对模型的性能产生影响。具体原因可能与模型的架构和数据集的特点有关,需要具体分析和实验。

详细解释代码import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader # 图像预处理 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) # 加载数据集 trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=0) # 构建模型 class RNNModel(nn.Module): def init(self): super(RNNModel, self).init() self.rnn = nn.RNN(input_size=3072, hidden_size=512, num_layers=2, batch_first=True) self.fc = nn.Linear(512, 10) def forward(self, x): # 将输入数据reshape成(batch_size, seq_len, feature_dim) x = x.view(-1, 3072, 1).transpose(1, 2) x, _ = self.rnn(x) x = x[:, -1, :] x = self.fc(x) return x net = RNNModel() # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) # 训练模型 loss_list = [] acc_list = [] for epoch in range(30): # 多批次循环 running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(trainloader, 0): # 获取输入 inputs, labels = data # 梯度清零 optimizer.zero_grad() # 前向传播,反向传播,优化 outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # 打印统计信息 running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total acc_list.append(acc) loss_list.append(running_loss / len(trainloader)) print('[%d] loss: %.3f, acc: %.3f' % (epoch + 1, running_loss / len(trainloader), acc)) print('Finished Training') torch.save(net.state_dict(), 'rnn1.pt') # 绘制loss变化曲线和准确率变化曲线 import matplotlib.pyplot as plt fig, axs = plt.subplots(2, 1, figsize=(10, 10)) axs[0].plot(loss_list) axs[0].set_title("Training Loss") axs[0].set_xlabel("Epoch") axs[0].set_ylabel("Loss") axs[1].plot(acc_list) axs[1].set_title("Training Accuracy") axs[1].set_xlabel("Epoch") axs[1].set_ylabel("Accuracy") plt.show() # 测试模型 correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

这段代码是一个基于RNN(循环神经网络)的模型来对CIFAR-10数据集进行分类。以下是详细的解释: 1. 导入需要的库: ``` import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms from torch.utils.data import DataLoader ``` 2. 图像预处理: ``` transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) ``` 这里使用了transforms.Compose()函数来将多个预处理操作组合在一起。首先将图像转换成张量,然后进行归一化,使其值在[-1,1]之间。 3. 加载数据集: ``` trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = DataLoader(testset, batch_size=128, shuffle=False, num_workers=0) ``` 这里使用了torchvision.datasets.CIFAR10()函数来加载CIFAR-10数据集,train=True表示加载训练集,train=False表示加载测试集。通过DataLoader()函数将数据集转换成一个可迭代的对象,可以方便地进行批处理、数据增强等操作。 4. 构建模型: ``` class RNNModel(nn.Module): def __init__(self): super(RNNModel, self).__init__() self.rnn = nn.RNN(input_size=3072, hidden_size=512, num_layers=2, batch_first=True) self.fc = nn.Linear(512, 10) def forward(self, x): x = x.view(-1, 3072, 1).transpose(1, 2) x, _ = self.rnn(x) x = x[:, -1, :] x = self.fc(x) return x net = RNNModel() ``` 这里定义了一个RNNModel类,它继承了nn.Module类。在__init__()方法中,我们定义了一个RNN层和一个全连接层来构建模型。在forward()方法中,我们首先将输入数据reshape成(batch_size, seq_len, feature_dim)的形状,然后经过RNN层得到输出,最后经过全连接层得到最终的分类结果。 5. 定义损失函数和优化器: ``` criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) ``` 这里使用交叉熵损失函数和Adam优化器来训练模型。 6. 训练模型: ``` loss_list = [] acc_list = [] for epoch in range(30): running_loss = 0.0 correct = 0 total =

相关推荐

import numpy import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn from torch.utils.data import DataLoader, Dataset import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value print(scalar) dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') train_X = torch.from_numpy(train_X) train_Y = torch.from_numpy(train_Y) test_X = torch.from_numpy(test_X) class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): out, h = self.rnn(x) out = self.linear(out[0]) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()请适当修改代码,并写出预测值和真实值的代码

import numpy as np import matplotlib.pyplot as plt import math import torch from torch import nn import pdb from torch.autograd import Variable import os os.environ['KMP_DUPLICATE_LIB_OK']='True' dataset = [] for data in np.arange(0, 3, .01): data = math.sin(data * math.pi) dataset.append(data) dataset = np.array(dataset) dataset = dataset.astype('float32') max_value = np.max(dataset) min_value = np.min(dataset) scalar = max_value - min_value dataset = list(map(lambda x: x / scalar, dataset)) def create_dataset(dataset, look_back=3): dataX, dataY = [], [] for i in range(len(dataset) - look_back): a = dataset[i:(i + look_back)] dataX.append(a) dataY.append(dataset[i + look_back]) return np.array(dataX), np.array(dataY) data_X, data_Y = create_dataset(dataset) # 对训练集测试集划分,划分比例0.8 train_X, train_Y = data_X[:int(0.8 * len(data_X))], data_Y[:int(0.8 * len(data_Y))] test_X, test_Y = data_Y[int(0.8 * len(data_X)):], data_Y[int(0.8 * len(data_Y)):] train_X = train_X.reshape(-1, 1, 3).astype('float32') train_Y = train_Y.reshape(-1, 1, 3).astype('float32') test_X = test_X.reshape(-1, 1, 3).astype('float32') class RNN(nn.Module): def __init__(self, input_size, hidden_size, output_size=1, num_layer=2): super(RNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.num_layer = num_layer self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) self.linear = nn.Linear(hidden_size, output_size) def forward(self, x): # 补充forward函数 out, h = self.rnn(x) out = self.linear(out[0]) # print("output的形状", out.shape) return out net = RNN(3, 20) criterion = nn.MSELoss(reduction='mean') optimizer = torch.optim.Adam(net.parameters(), lr=1e-2) train_loss = [] test_loss = [] for e in range(1000): pred = net(train_X) loss = criterion(pred, train_Y) optimizer.zero_grad() # 反向传播 loss.backward() optimizer.step() if (e + 1) % 100 == 0: print('Epoch:{},loss:{:.10f}'.format(e + 1, loss.data.item())) train_loss.append(loss.item()) plt.plot(train_loss, label='train_loss') plt.legend() plt.show()画出预测值真实值图

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩