vgg19图像风格迁移代码
时间: 2024-06-11 16:02:37 浏览: 150
VGG19图像风格迁移是一种通过深度学习实现图像风格转移的方法,其基于深度神经网络VGG19。其代码实现可以分为以下几步:
1. 导入必要的库:包括numpy、tensorflow等。
2. 加载预训练的VGG19模型:使用tensorflow的tf.keras.applications中的VGG19模型进行预训练。
3. 提取内容图片和风格图片的特征:使用预训练的VGG19模型提取内容图片和风格图片的特征。
4. 定义损失函数:将内容损失和风格损失加权求和作为总损失函数。
5. 使用优化器进行训练:通过梯度下降优化器来更新生成图片。
以下是简单的代码实现:
```
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications import VGG19
from tensorflow.keras.preprocessing.image import load_img, img_to_array
# 加载VGG19模型,去掉最后一层输出
vgg = VGG19(include_top=False, weights='imagenet')
# 定义内容图片和风格图片的路径
content_path = 'content.jpg'
style_path = 'style.jpg'
# 加载图片并进行预处理
def load_and_process_img(path):
img = load_img(path)
img = img_to_array(img)
img = np.expand_dims(img, axis=0)
img = tf.keras.applications.vgg19.preprocess_input(img)
return img
# 提取内容图片和风格图片的特征
def get_feature_representations(model, content_path, style_path):
content_image = load_and_process_img(content_path)
style_image = load_and_process_img(style_path)
content_feature_maps = model.predict(content_image)
style_feature_maps = model.predict(style_image)
return content_feature_maps, style_feature_maps
# 计算Gram矩阵
def gram_matrix(input_tensor):
channels = int(input_tensor.shape[-1])
a = tf.reshape(input_tensor, [-1, channels])
n = tf.shape(a)
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
# 定义内容损失
def get_content_loss(base_content, target):
return tf.reduce_mean(tf.square(base_content - target))
# 定义风格损失
def get_style_loss(base_style, gram_target):
return tf.reduce_mean(tf.square(gram_matrix(base_style) - gram_target))
# 定义总损失函数
def compute_loss(model, loss_weights, init_image, gram_style_features, content_features):
style_weight, content_weight = loss_weights
model_outputs = model(init_image)
style_output_features = model_outputs[:len(gram_style_features)]
content_output_features = model_outputs[len(gram_style_features):]
style_score = 0
content_score = 0
weight_per_style_layer = 1.0 / float(len(style_output_features))
for target_style, comb_style in zip(gram_style_features, style_output_features):
style_score += weight_per_style_layer * get_style_loss(comb_style, target_style)
weight_per_content_layer = 1.0 / float(len(content_output_features))
for target_content, comb_content in zip(content_features, content_output_features):
content_score += weight_per_content_layer* get_content_loss(comb_content, target_content)
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
return loss
# 定义优化器
def run_style_transfer(content_path, style_path,
num_iterations=1000,
content_weight=1e3,
style_weight=1e-2):
# 提取内容图片和风格图片的特征
content_features, style_features = get_feature_representations(vgg, content_path, style_path)
gram_style_features = [gram_matrix(feature) for feature in style_features]
init_image = load_and_process_img(content_path)
init_image = tf.Variable(init_image, dtype=tf.float32)
opt = tf.optimizers.Adam(learning_rate=5, beta_1=0.99, epsilon=1e-1)
# 定义损失权重
loss_weights = (style_weight, content_weight)
# 进行训练
for i in range(num_iterations):
with tf.GradientTape() as tape:
loss = compute_loss(vgg, loss_weights, init_image, gram_style_features, content_features)
grad = tape.gradient(loss, init_image)
opt.apply_gradients([(grad, init_image)])
clipped = tf.clip_by_value(init_image, clip_value_min=0.0, clip_value_max=255.0)
init_image.assign(clipped)
return init_image.numpy()
```
阅读全文