详细说一下用vgg19实现风格迁移
时间: 2023-09-11 15:11:17 浏览: 97
风格迁移是一种利用深度学习技术将两幅图像的风格进行融合的方法。其中,一幅图像称为内容图像,另一幅图像称为风格图像。风格迁移的任务是将内容图像的内容与风格图像的风格进行融合,生成一幅新的图像。利用深度学习模型实现风格迁移,可以获得更为自然和逼真的效果。
vgg19是一种深度卷积神经网络模型,可以在预训练模型上进行风格迁移。下面详细介绍用vgg19实现风格迁移的步骤。
1.导入必要的库
``` python
import tensorflow as tf
from tensorflow.keras.applications.vgg19 import VGG19
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.applications.vgg19 import preprocess_input
import numpy as np
```
2.加载图像并进行预处理
``` python
def load_and_process_image(image_path):
img = load_img(image_path)
img = img_to_array(img)
img = preprocess_input(img)
img = np.expand_dims(img, axis=0)
return img
```
3.定义反处理图像的函数
``` python
def deprocess_image(x):
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
```
4.定义计算内容损失的函数
``` python
def get_content_loss(base_content, target):
return tf.reduce_mean(tf.square(base_content - target))
```
5.定义Gram矩阵
``` python
def gram_matrix(input_tensor):
channels = int(input_tensor.shape[-1])
a = tf.reshape(input_tensor, [-1, channels])
n = tf.shape(a)[0]
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
```
6.定义计算风格损失的函数
``` python
def get_style_loss(base_style, gram_target):
gram_style = gram_matrix(base_style)
return tf.reduce_mean(tf.square(gram_style - gram_target))
```
7.定义提取特征的函数
``` python
def get_feature_representations(model, content_path, style_path):
content_image = load_and_process_image(content_path)
style_image = load_and_process_image(style_path)
content_outputs = model(content_image)
style_outputs = model(style_image)
content_features = [content_layer[0] for content_layer in content_outputs[:4]]
style_features = [style_layer[0] for style_layer in style_outputs[:4]]
return content_features, style_features
```
8.定义计算损失的函数
``` python
def compute_loss(model, loss_weights, init_image, gram_style_features, content_features):
style_weight, content_weight = loss_weights
model_outputs = model(init_image)
style_output_features = model_outputs[:4]
content_output_features = model_outputs[4:]
style_score = 0
content_score = 0
weight_per_style_layer = 1.0 / float(len(style_output_features))
for target_style, comb_style in zip(gram_style_features, style_output_features):
style_score += weight_per_style_layer * get_style_loss(comb_style[0], target_style)
weight_per_content_layer = 1.0 / float(len(content_output_features))
for target_content, comb_content in zip(content_features, content_output_features):
content_score += weight_per_content_layer * get_content_loss(comb_content[0], target_content)
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
return loss, style_score, content_score
```
9.定义计算梯度的函数
``` python
def compute_grads(cfg):
with tf.GradientTape() as tape:
all_loss = compute_loss(**cfg)
total_loss = all_loss[0]
return tape.gradient(total_loss, cfg['init_image']), all_loss
```
10.定义运行风格迁移的函数
``` python
def run_style_transfer(content_path, style_path, num_iterations=1000, content_weight=1e3, style_weight=1e-2):
model = VGG19(include_top=False, weights='imagenet')
for layer in model.layers:
layer.trainable = False
content_features, style_features = get_feature_representations(model, content_path, style_path)
gram_style_features = [gram_matrix(style_feature) for style_feature in style_features]
init_image = load_and_process_image(content_path)
init_image = tf.Variable(init_image, dtype=tf.float32)
opt = tf.optimizers.Adam(learning_rate=5, beta_1=0.99, epsilon=1e-1)
loss_weights = (style_weight, content_weight)
cfg = {
'model': model,
'loss_weights': loss_weights,
'init_image': init_image,
'gram_style_features': gram_style_features,
'content_features': content_features
}
best_loss, best_img = float('inf'), None
for i in range(num_iterations):
grads, all_loss = compute_grads(cfg)
loss, style_score, content_score = all_loss
opt.apply_gradients([(grads, init_image)])
clipped = tf.clip_by_value(init_image, clip_value_min=0.0, clip_value_max=255.0)
init_image.assign(clipped)
if loss < best_loss:
best_loss = loss
best_img = deprocess_image(init_image.numpy())
print("Iteration: {}".format(i))
return best_img
```
在此函数中,根据提供的内容图像和风格图像,使用vgg19模型生成新的图像。可以通过调整参数来改变生成图像的外观。
阅读全文