如何利用vgg19实现风格迁移
时间: 2023-06-29 11:13:02 浏览: 220
利用vgg19实现风格迁移的方法通常包括以下步骤:
1.准备数据:需要准备一张内容图片和一张风格图片。
2.加载模型:使用预训练的VGG19模型,可以在Keras或PyTorch中加载。
3.选择层:选择需要进行风格迁移的VGG19模型中的一些层,这些层将用于提取内容和风格特征。
4.计算内容损失:通过比较内容图像和生成的图像之间的特征差异,计算内容损失。
5.计算风格损失:通过比较风格图像和生成的图像之间的特征差异,计算风格损失。
6.计算总损失:将内容损失和风格损失加权组合成总损失,用于优化模型。
7.优化模型:通过反向传播算法,优化总损失,生成新的图像。
可以使用以下代码实现vgg19的风格迁移:
``` python
import tensorflow as tf
from tensorflow.keras.applications.vgg19 import VGG19
from tensorflow.keras.preprocessing.image import load_img, img_to_array
from tensorflow.keras.applications.vgg19 import preprocess_input
import numpy as np
def load_and_process_image(image_path):
img = load_img(image_path)
img = img_to_array(img)
img = preprocess_input(img)
img = np.expand_dims(img, axis=0)
return img
def deprocess_image(x):
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
def get_content_loss(base_content, target):
return tf.reduce_mean(tf.square(base_content - target))
def gram_matrix(input_tensor):
channels = int(input_tensor.shape[-1])
a = tf.reshape(input_tensor, [-1, channels])
n = tf.shape(a)[0]
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
def get_style_loss(base_style, gram_target):
gram_style = gram_matrix(base_style)
return tf.reduce_mean(tf.square(gram_style - gram_target))
def get_feature_representations(model, content_path, style_path):
content_image = load_and_process_image(content_path)
style_image = load_and_process_image(style_path)
content_outputs = model(content_image)
style_outputs = model(style_image)
content_features = [content_layer[0] for content_layer in content_outputs[:4]]
style_features = [style_layer[0] for style_layer in style_outputs[:4]]
return content_features, style_features
def compute_loss(model, loss_weights, init_image, gram_style_features, content_features):
style_weight, content_weight = loss_weights
model_outputs = model(init_image)
style_output_features = model_outputs[:4]
content_output_features = model_outputs[4:]
style_score = 0
content_score = 0
weight_per_style_layer = 1.0 / float(len(style_output_features))
for target_style, comb_style in zip(gram_style_features, style_output_features):
style_score += weight_per_style_layer * get_style_loss(comb_style[0], target_style)
weight_per_content_layer = 1.0 / float(len(content_output_features))
for target_content, comb_content in zip(content_features, content_output_features):
content_score += weight_per_content_layer * get_content_loss(comb_content[0], target_content)
style_score *= style_weight
content_score *= content_weight
loss = style_score + content_score
return loss, style_score, content_score
def compute_grads(cfg):
with tf.GradientTape() as tape:
all_loss = compute_loss(**cfg)
total_loss = all_loss[0]
return tape.gradient(total_loss, cfg['init_image']), all_loss
def run_style_transfer(content_path, style_path, num_iterations=1000, content_weight=1e3, style_weight=1e-2):
model = VGG19(include_top=False, weights='imagenet')
for layer in model.layers:
layer.trainable = False
content_features, style_features = get_feature_representations(model, content_path, style_path)
gram_style_features = [gram_matrix(style_feature) for style_feature in style_features]
init_image = load_and_process_image(content_path)
init_image = tf.Variable(init_image, dtype=tf.float32)
opt = tf.optimizers.Adam(learning_rate=5, beta_1=0.99, epsilon=1e-1)
loss_weights = (style_weight, content_weight)
cfg = {
'model': model,
'loss_weights': loss_weights,
'init_image': init_image,
'gram_style_features': gram_style_features,
'content_features': content_features
}
best_loss, best_img = float('inf'), None
for i in range(num_iterations):
grads, all_loss = compute_grads(cfg)
loss, style_score, content_score = all_loss
opt.apply_gradients([(grads, init_image)])
clipped = tf.clip_by_value(init_image, clip_value_min=0.0, clip_value_max=255.0)
init_image.assign(clipped)
if loss < best_loss:
best_loss = loss
best_img = deprocess_image(init_image.numpy())
print("Iteration: {}".format(i))
return best_img
```
这个函数可以根据您提供的内容图像和风格图像生成新的图像,可以调整参数来改变生成图像的外观。
阅读全文