python实现风格迁移的代码
时间: 2024-03-18 10:35:18 浏览: 113
以下是使用TensorFlow实现风格迁移的Python代码:
```python
import numpy as np
import tensorflow as tf
import scipy.misc
import argparse
import os
import time
import sys
# 定义参数
parser = argparse.ArgumentParser()
parser.add_argument('--content', type=str, default='content.jpg',
help='Content image')
parser.add_argument('--style', type=str, default='style.jpg',
help='Style image')
parser.add_argument('--output', type=str, default='output.jpg',
help='Output image')
parser.add_argument('--iterations', type=int, default=1000,
help='Number of iterations')
parser.add_argument('--content_weight', type=float, default=0.1,
help='Content weight')
parser.add_argument('--style_weight', type=float, default=1.0,
help='Style weight')
parser.add_argument('--learning_rate', type=float, default=10,
help='Learning rate')
args = parser.parse_args()
# 加载图像
def load_image(path):
image = scipy.misc.imread(path).astype(np.float)
image = np.expand_dims(image, axis=0)
image = vgg19.preprocess(image)
return image
# 保存图像
def save_image(path, image):
image = image.reshape((image.shape[1], image.shape[2], 3))
image = vgg19.deprocess(image)
scipy.misc.imsave(path, image)
# 定义VGG19模型
class VGG19:
def __init__(self, input_image):
self.input_image = input_image
self.mean_pixel = np.array([123.68, 116.779, 103.939]).reshape((1,1,1,3))
self.layers = [
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
'relu5_3', 'conv5_4', 'relu5_4'
]
self.weights = self.load_weights()
# 加载VGG19模型的权重
def load_weights(self):
weights = np.load('vgg19_weights.npy', encoding='latin1').item()
return weights
# 预处理图像
def preprocess(self, image):
return image - self.mean_pixel
# 反向预处理图像
def deprocess(self, image):
return image + self.mean_pixel
# 定义卷积层
def conv_layer(self, input, weights, bias):
conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1,1,1,1), padding='SAME')
return tf.nn.bias_add(conv, bias)
# 定义池化层
def pool_layer(self, input):
return tf.nn.max_pool(input, ksize=(1,2,2,1), strides=(1,2,2,1), padding='SAME')
# 定义前向传播
def forward(self):
net = {}
current = self.input_image
for i, name in enumerate(self.layers):
kind = name[:4]
if kind == 'conv':
kernels = self.weights[name][0][0]
bias = self.weights[name][0][1]
current = self.conv_layer(current, kernels, bias)
elif kind == 'relu':
current = tf.nn.relu(current)
elif kind == 'pool':
current = self.pool_layer(current)
net[name] = current
return net
# 定义内容损失
def content_loss(content, combination):
return tf.reduce_sum(tf.square(combination - content))
# 定义风格损失
def style_loss(style, combination):
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = style.shape[1] * style.shape[2]
return tf.reduce_sum(tf.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2))
# 定义Gram矩阵
def gram_matrix(input_tensor):
channels = int(input_tensor.shape[-1])
a = tf.reshape(input_tensor, [-1, channels])
n = tf.shape(a)[0]
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
# 定义总损失
def total_loss(content_image, style_image, combination_image):
with tf.variable_scope('loss') as scope:
content_layers = ['conv4_2']
style_layers = ['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1']
vgg = VGG19(combination_image)
net = vgg.forward()
content_features = {}
style_features = {}
for layer in content_layers:
content_features[layer] = net[layer]
for layer in style_layers:
style_features[layer] = net[layer]
loss = 0
# 计算内容损失
for layer in content_layers:
content_feature = content_features[layer]
combination_feature = net[layer]
loss += args.content_weight * content_loss(content_feature, combination_feature)
# 计算风格损失
for layer in style_layers:
style_feature = style_features[layer]
combination_feature = net[layer]
sl = style_loss(style_feature, combination_feature)
loss += (args.style_weight / len(style_layers)) * sl
# 计算总变差损失
loss += args.tv_weight * tf.image.total_variation(combination_image)
return loss
# 定义训练函数
def train(content_image, style_image, output_image):
content_shape = content_image.shape
style_shape = style_image.shape
with tf.Graph().as_default():
# 定义输入
content = tf.placeholder(tf.float32, shape=content_shape, name='content')
style = tf.placeholder(tf.float32, shape=style_shape, name='style')
combination = tf.Variable(tf.random_normal(content_shape), name='combination')
# 定义损失函数
loss = total_loss(content, style, combination)
# 定义优化器
optimizer = tf.train.AdamOptimizer(args.learning_rate).minimize(loss)
# 开始训练
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.assign(combination, content))
for i in range(args.iterations):
sess.run(optimizer, feed_dict={content: content_image, style: style_image})
if i % 100 == 0:
print('Iteration %d' % i)
output_image = sess.run(combination, feed_dict={content: content_image, style: style_image})
save_image(args.output, output_image)
output_image = sess.run(combination, feed_dict={content: content_image, style: style_image})
save_image(args.output, output_image)
# 加载图像
content_image = load_image(args.content)
style_image = load_image(args.style)
# 进行风格迁移
train(content_image, style_image, args.output)
```
阅读全文