resnet50网络搭建
时间: 2025-01-03 13:27:39 浏览: 12
### 如何构建和训练ResNet50深度学习模型
#### 使用PyTorch框架下的ResNet50架构实现
为了创建并训练一个基于ResNet50的卷积神经网络(CNN),可以采用流行的机器学习库之一——PyTorch。下面是一个简单的例子来展示怎样定义、加载预训练参数以及继续训练这个特定类型的CNN。
```python
import torch
from torchvision import models, transforms
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
import torch.nn as nn
import torch.optim as optim
```
初始化ResNet50模型:
```python
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = models.resnet50(pretrained=True).to(device)
```
调整最后一层全连接层以适应新的分类任务需求,比如如果有十个类别,则修改如下:
```python
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 10).to(device) # 假设有10类目标标签
```
设定损失函数与优化器:
```python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```
准备数据集,并应用必要的图像变换操作使其适合输入给定的网络结构:
```python
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {x: ImageFolder(root=f'data/{x}', transform=data_transforms[x]) for x in ['train']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4) for x in ['train']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train']}
class_names = image_datasets['train'].classes
```
编写训练循环来进行迭代更新权重直到满足停止条件为止:
```python
def train_model(model, criterion, optimizer, scheduler=None, num_epochs=25):
best_acc = 0.0
for epoch in range(num_epochs):
running_loss = 0.0
corrects = 0
for inputs, labels in dataloaders['train']:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes['train']
epoch_acc = corrects.double() / dataset_sizes['train']
print(f'Train Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
if epoch_acc > best_acc:
best_acc = epoch_acc
return model
```
完成上述过程之后就可以调用`train_model()`方法开始实际的训练流程了[^1]。
对于已经训练好的模型,可以通过指定路径将其保存下来以便后续重复利用这些学到的知识而无需每次都重新计算一遍所有的梯度下降步骤[^2]。
阅读全文