resnet 18搭建
时间: 2023-11-01 16:07:20 浏览: 98
ResNet-18是一个经典的深度残差网络,用于图像分类任务。下面是搭建ResNet-18的一般步骤:
1. 导入必要的库和模块,例如torch和torchvision。
2. 定义ResNet-18的基本模块,即残差块(Residual block)。一个残差块由两个卷积层和一个跳跃连接(shortcut connection)组成。
3. 构建整个ResNet-18网络结构。ResNet-18由多个残差块组成,其中包括不同层数和通道数的卷积层。
4. 定义分类器层,将ResNet-18的输出特征映射转化为类别预测。
5. 初始化模型参数。
6. 定义损失函数,例如交叉熵损失函数。
7. 定义优化器,例如随机梯度下降(SGD)优化器。
8. 进行训练。将数据输入到ResNet-18模型中,计算损失并进行反向传播,更新模型参数。
9. 在测试集上评估模型性能。
请注意,上述步骤仅为一般搭建ResNet-18的流程,具体实现细节可能因不同的框架和库而有所不同。
相关问题
torch使用resnet18搭建图片识别模型,并使用本地的数据集
好的,我可以帮你解答这个问题。首先,你需要先安装PyTorch库。然后,你可以按照以下步骤使用ResNet18模型进行图像分类:
1. 导入必要的库和模块:
``` python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
```
2. 定义数据集的转换操作:
``` python
transform = transforms.Compose(
[transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
```
这里我们将图像大小调整为224x224,将其转换为张量并进行归一化。
3. 加载数据集:
``` python
trainset = torchvision.datasets.ImageFolder(root='./data/train', transform=transform)
trainloader = DataLoader(trainset, batch_size=32, shuffle=True, num_workers=2)
testset = torchvision.datasets.ImageFolder(root='./data/test', transform=transform)
testloader = DataLoader(testset, batch_size=32, shuffle=False, num_workers=2)
```
这里我们假设数据集的文件夹结构如下:
```
data/
train/
class1/
image1.jpg
image2.jpg
...
class2/
image1.jpg
image2.jpg
...
...
test/
class1/
image1.jpg
image2.jpg
...
class2/
image1.jpg
image2.jpg
...
...
```
我们使用ImageFolder类加载数据集,这里我们有一个训练集和一个测试集。
4. 定义模型:
``` python
class ResNet18(nn.Module):
def __init__(self, num_classes=10):
super(ResNet18, self).__init__()
self.resnet = torchvision.models.resnet18(pretrained=False)
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.resnet.conv1(x)
x = self.resnet.bn1(x)
x = self.resnet.relu(x)
x = self.resnet.maxpool(x)
x = self.resnet.layer1(x)
x = self.resnet.layer2(x)
x = self.resnet.layer3(x)
x = self.resnet.layer4(x)
x = self.resnet.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
这里我们定义了一个ResNet18的模型,并对最后一层进行了修改以适应我们的数据集。
5. 定义损失函数和优化器:
``` python
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
```
这里我们使用交叉熵损失函数和随机梯度下降优化器。
6. 训练模型:
``` python
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 10 == 9:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 10))
running_loss = 0.0
```
在这里我们进行了10个轮次的训练,每个轮次中,我们遍历训练集并更新模型参数。
7. 测试模型:
``` python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (
100 * correct / total))
```
这里我们在测试集上验证模型的准确率。
希望这些步骤能够帮到你,祝好运!
PyTorch搭建ResNet18
好的,下面是一个简单的例子:
```python
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = ['ResNet', 'resnet18']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(ResNet, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
```
这是一个标准的 ResNet18 的 PyTorch 实现,其中包括了 `BasicBlock` 和 `ResNet` 两个类,以及 `resnet18` 函数,用于构建 ResNet18 模型。你可以在 `ResNet` 类中自定义层数和其他参数,如 `num_classes`(分类数目)等。在 `resnet18` 函数中,你可以通过设置 `pretrained=True` 来加载预训练权重。
阅读全文