使用pytorch搭建一个resnet18的模型,搭建模型时模型里面不要引用其他的类
时间: 2024-05-14 13:14:35 浏览: 105
以下是使用pytorch搭建一个resnet18的模型的示例代码,该模型不引用其他类:
```python
import torch
import torch.nn as nn
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 2)
self.layer2 = self._make_layer(128, 2, stride=2)
self.layer3 = self._make_layer(256, 2, stride=2)
self.layer4 = self._make_layer(512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, 10)
def _make_layer(self, planes, blocks, stride=1):
layers = []
layers.append(nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
for i in range(blocks-1):
layers.append(nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
该模型的输入为3通道的图像,输出为10个类别的预测结果。该模型的结构与原始的ResNet18相同,并且没有引用其他的类。
阅读全文