用pytorch自己搭建ResNet18模型,并使用sgd优化器,模型的layer1学习为0.1,模型的layer2学习为0.2,除了layer1和layer2模型的其余参数学习率设置为0.3,给出具体的代码
时间: 2024-05-05 17:15:47 浏览: 88
基于人工大猩猩部队算法优化卷积神经网络(GTO-CNN)的回归预测预测,多变量输入模型 优化参数为学习率,批大小batchs
```python
import torch.nn as nn
import torch.optim as optim
from torchvision.models import ResNet
from torch.optim.lr_scheduler import MultiStepLR
class ResNet18(nn.Module):
def __init__(self):
super(ResNet18, self).__init__()
self.resnet = ResNet(block=BasicBlock, layers=[2, 2, 2, 2], num_classes=10)
# 设置不同层的学习率
self.layer1_params = list(map(id, self.resnet.layer1.parameters()))
self.layer2_params = list(map(id, self.resnet.layer2.parameters()))
self.other_params = filter(lambda p: id(p) not in self.layer1_params + self.layer2_params,
self.resnet.parameters())
self.optimizer = optim.SGD([{'params': self.layer1_params, 'lr': 0.1},
{'params': self.layer2_params, 'lr': 0.2},
{'params': self.other_params, 'lr': 0.3}],
momentum=0.9, weight_decay=5e-4)
self.scheduler = MultiStepLR(self.optimizer, milestones=[150, 225], gamma=0.1)
def forward(self, x):
x = self.resnet(x)
return x
```
阅读全文