用pytorch写一个resnet
时间: 2023-09-07 13:05:20 浏览: 136
### 回答1:
当然可以。以下是用PyTorch实现ResNet的代码:
```
import torch
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], stride=2)
self.layer3 = self.make_layer(block, 256, layers[2], stride=2)
self.layer4 = self.make_layer(block, 512, layers[3], stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * block.expansion)
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
其中,ResNet包括多个残差块(Residual Block),每个残差块由两个卷积层和一个残差连接组成。通过make_layer函数创建每个残差
### 回答2:
在PyTorch中编写一个ResNet模型的过程如下:
首先,我们需要导入PyTorch的相关库:
```python
import torch
import torch.nn as nn
from torchvision.models import ResNet
from torchvision.transforms import ToTensor
```
接下来,创建一个自定义的ResNet类,继承自PyTorch的nn.Module:
```python
class MyResNet(nn.Module):
def __init__(self, num_classes):
super(MyResNet, self).__init__()
# 加载预训练的ResNet模型
self.resnet = ResNet()
# 替换最后一层全连接层,使其适应我们的任务
self.resnet.fc = nn.Linear(self.resnet.fc.in_features, num_classes)
def forward(self, x):
return self.resnet(x)
```
在构建MyResNet类时,我们加载了预训练的ResNet模型,并通过替换最后一层全连接层,将其适应我们的任务。这里的num_classes指定了模型的输出类别数。
然后,创建一个实例并传入相关参数:
```python
model = MyResNet(num_classes=10)
```
我们可以将数据转换为张量并将其输入到模型中进行预测:
```python
input_data = ToTensor()(input_data) # 将数据转换为张量
output = model(input_data) # 输入前向传播获取输出结果
```
最后,我们可以根据任务需求,定义损失函数和优化器,并使用反向传播来更新模型的权重:
```python
loss_function = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
# 计算损失值并进行反向传播
loss = loss_function(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
以上是使用PyTorch编写一个ResNet模型的基本步骤。在实际应用中,可能需要根据具体的任务和数据进行一些调整和优化。
### 回答3:
使用PyTorch编写一个ResNet模型可以分为以下几个步骤。
首先,导入需要的库和模块。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
```
然后,定义ResNet的基本模块,如卷积、批归一化和残差块。
```python
# 定义卷积块
def conv_block(in_channels, out_channels, stride=1):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
)
# 定义残差块
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = conv_block(in_channels, out_channels, stride)
self.conv2 = conv_block(out_channels, out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.conv2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = nn.ReLU(inplace=True)(out)
return out
```
接下来,定义ResNet模型。
```python
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv = conv_block(3, 64)
self.layer1 = self.make_layer(block, 64, num_blocks[0])
self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, out_channels, num_blocks, stride=1):
downsample = None
if stride != 1 or self.in_channels != out_channels:
downsample = nn.Sequential(
nn.Conv2d(self.in_channels, out_channels, kernel_size=1, stride=stride),
nn.BatchNorm2d(out_channels)
)
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for _ in range(1, num_blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = torch.flatten(out, 1)
out = self.fc(out)
return out
```
最后,创建ResNet模型的实例并进行训练。
```python
# 定义超参数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
num_epochs = 10
learning_rate = 0.001
batch_size = 128
# 加载数据集
transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
train_dataset = torchvision.datasets.CIFAR10(root='./data',
train=True,
download=True,
transform=transform)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_dataset = torchvision.datasets.CIFAR10(root='./data',
train=False,
download=True,
transform=transform)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=False)
# 创建ResNet模型实例
model = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 模型训练
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
# 模型测试
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('准确率: {} %'.format(100 * correct / total))
```
通过上述步骤,我们可以使用PyTorch编写一个ResNet模型,并对其进行训练和测试。
阅读全文