用pytorch写一个resnet50网络结构,实现对维度为[1,28,28]的图片的特征提取
时间: 2024-04-12 20:32:19 浏览: 153
pytorch实现用Resnet提取特征并保存为txt文件的方法
5星 · 资源好评率100%
当然可以!以下是一个使用PyTorch编写的ResNet-50网络结构的示例代码,用于对维度为[1, 28, 28]的图片进行特征提取:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
# 定义ResNet-50网络结构
class ResNet50(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet50, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(64, 64, 3)
self.layer2 = self._make_layer(64, 128, 4, stride=2)
self.layer3 = self._make_layer(128, 256, 6, stride=2)
self.layer4 = self._make_layer(256, 512, 3, stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, in_channels, out_channels, num_blocks, stride=1):
layers = []
layers.append(Bottleneck(in_channels, out_channels, stride))
in_channels = out_channels * Bottleneck.expansion
for _ in range(1, num_blocks):
layers.append(Bottleneck(in_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
# 定义Bottleneck块
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_channels, out_channels, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = None
if stride != 1 or in_channels != out_channels * self.expansion:
self.downsample = nn.Sequential(
nn.Conv2d(in_channels, out_channels * self.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * self.expansion),
)
def forward(self, x):
identity = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
if self.downsample is not None:
identity = self.downsample(identity)
x += identity
x = self.relu(x)
return x
# 创建ResNet-50模型实例
model = ResNet50()
# 输入维度为[1, 28, 28]的图片
input_tensor = torch.randn(1, 1, 28, 28)
# 特征提取
features = model(input_tensor)
print(features.shape)
```
这段代码定义了一个ResNet-50网络结构,其中包含了Bottleneck块。你可以通过创建该模型的实例,并将维度为[1, 28, 28]的图片输入模型,即可进行特征提取。输出的`features`是一个tensor,它的形状取决于最后一层全连接层的输出维度。在这个示例中,我们没有使用预训练的权重,而是随机初始化了网络参数。你可以根据自己的需求修改网络结构和参数初始化方式。
阅读全文