遗传算法求解主从博弈代码
时间: 2023-12-20 07:32:30 浏览: 158
根据提供的引用内容,我了解到你对遗传算法求解主从博弈代码感兴趣。遗传算法是一种优化算法,它模拟了生物进化的过程,通过不断迭代和选择来寻找最优解。在主从博弈中,遗传算法可以用来优化策略或者寻找最佳的博弈方案。
以下是一个使用遗传算法求解主从博弈的简单示例代码:
```python
import random
# 定义主从博弈的策略空间
strategy_space = ['C', 'D']
# 定义遗传算法的参数
population_size = 100 # 种群大小
max_generations = 100 # 最大迭代次数
mutation_rate = 0.1 # 变异率
# 定义主从博弈的收益矩阵
payoff_matrix = {
('C', 'C'): (3, 3),
('C', 'D'): (0, 5),
('D', 'C'): (5, 0),
('D', 'D'): (1, 1)
}
# 定义个体类
class Individual:
def __init__(self, strategy):
self.strategy = strategy
self.fitness = 0
def calculate_fitness(self):
self.fitness = 0
for opponent_strategy in strategy_space:
payoff = payoff_matrix[(self.strategy, opponent_strategy)]
self.fitness += payoff[0]
def mutate(self):
if random.random() < mutation_rate:
self.strategy = random.choice(strategy_space)
# 初始化种群
population = []
for _ in range(population_size):
strategy = random.choice(strategy_space)
individual = Individual(strategy)
population.append(individual)
# 迭代优化
for generation in range(max_generations):
# 计算适应度
for individual in population:
individual.calculate_fitness()
# 选择下一代
population.sort(key=lambda x: x.fitness, reverse=True)
elite = population[:int(population_size * 0.2)]
offspring = elite.copy()
while len(offspring) < population_size:
parent1 = random.choice(elite)
parent2 = random.choice(elite)
child_strategy = random.choice([parent1.strategy, parent2.strategy])
child = Individual(child_strategy)
child.mutate()
offspring.append(child)
population = offspring
# 输出最优策略
best_individual = max(population, key=lambda x: x.fitness)
print("Best strategy:", best_individual.strategy)
```
这段代码使用遗传算法来求解主从博弈的最优策略。首先定义了主从博弈的策略空间和收益矩阵。然后定义了个体类,包含策略和适应度属性,并实现了计算适应度和变异的方法。接下来初始化种群,并进行迭代优化,每一代都计算个体的适应度,选择下一代,并进行变异操作。最后输出最优策略。
阅读全文