遗传算法求解主从博弈代码

时间: 2023-12-20 09:32:30 浏览: 70
根据提供的引用内容,我了解到你对遗传算法求解主从博弈代码感兴趣。遗传算法是一种优化算法,它模拟了生物进化的过程,通过不断迭代和选择来寻找最优解。在主从博弈中,遗传算法可以用来优化策略或者寻找最佳的博弈方案。 以下是一个使用遗传算法求解主从博弈的简单示例代码: ```python import random # 定义主从博弈的策略空间 strategy_space = ['C', 'D'] # 定义遗传算法的参数 population_size = 100 # 种群大小 max_generations = 100 # 最大迭代次数 mutation_rate = 0.1 # 变异率 # 定义主从博弈的收益矩阵 payoff_matrix = { ('C', 'C'): (3, 3), ('C', 'D'): (0, 5), ('D', 'C'): (5, 0), ('D', 'D'): (1, 1) } # 定义个体类 class Individual: def __init__(self, strategy): self.strategy = strategy self.fitness = 0 def calculate_fitness(self): self.fitness = 0 for opponent_strategy in strategy_space: payoff = payoff_matrix[(self.strategy, opponent_strategy)] self.fitness += payoff[0] def mutate(self): if random.random() < mutation_rate: self.strategy = random.choice(strategy_space) # 初始化种群 population = [] for _ in range(population_size): strategy = random.choice(strategy_space) individual = Individual(strategy) population.append(individual) # 迭代优化 for generation in range(max_generations): # 计算适应度 for individual in population: individual.calculate_fitness() # 选择下一代 population.sort(key=lambda x: x.fitness, reverse=True) elite = population[:int(population_size * 0.2)] offspring = elite.copy() while len(offspring) < population_size: parent1 = random.choice(elite) parent2 = random.choice(elite) child_strategy = random.choice([parent1.strategy, parent2.strategy]) child = Individual(child_strategy) child.mutate() offspring.append(child) population = offspring # 输出最优策略 best_individual = max(population, key=lambda x: x.fitness) print("Best strategy:", best_individual.strategy) ``` 这段代码使用遗传算法来求解主从博弈的最优策略。首先定义了主从博弈的策略空间和收益矩阵。然后定义了个体类,包含策略和适应度属性,并实现了计算适应度和变异的方法。接下来初始化种群,并进行迭代优化,每一代都计算个体的适应度,选择下一代,并进行变异操作。最后输出最优策略。

相关推荐

最新推荐

recommend-type

双层规划模型的遗传算法求解的Matlab源码-双层规划模型的遗传算法求解的Matlab源码.doc

双层规划模型的遗传算法求解的Matlab源码-双层规划模型的遗传算法求解的Matlab源码.doc 非常实用,值得一看
recommend-type

基于遗传算法的矩形件排样问题求解

在分析了常用矩形件优化排样算法的基础上,提出了一种新的改进算法,在排样过程中加入旋转策略和改进了的向...将此算法作为一种解码方法,与遗传算法相结合来求解矩形件排样问题。算例表明了该算法能达到更好的排样效果。
recommend-type

遗传算法求解01背包问题——问题分析

01背包问题属于组合优化问题的一个例子,求解01背包问题的过程可以被视作在很多可行解当中求解一个最优解。...遗传算法(Genetic Algorithms)则是一种适合于在大量的可行解中搜索最优(或次优)解的有效算法。
recommend-type

【图像压缩】 GUI矩阵的奇异值分解SVD灰色图像压缩【含Matlab源码 4359期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

node-v0.9.2-x86.msi

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。