RuntimeError: Error(s) in loading state_dict for Network_bn: size mismatch for fc1.weight: copying a param with shape torch.Size([4, 21168]) from checkpoint, the shape in current model is torch.Size([5, 21168]). size mismatch for fc1.bias: copying a param with shape torch.Size([4]) from checkpoint, the shape in current model is torch.Size([5]).

时间: 2024-02-02 19:28:35 浏览: 22
这个错误是由于加载模型参数时,发现模型的参数形状与checkpoint中的形状不匹配导致的。具体来说,出错的是网络中的fc1层的权重和偏置。 在checkpoint中,fc1权重的形状为torch.Size([4, 21168]),而当前模型中的形状为torch.Size([5, 21168])。同样,fc1偏置的形状在checkpoint中为torch.Size([4]),而当前模型中的形状为torch.Size([5])。 要解决这个问题,你需要确保当前模型的fc1层与checkpoint中的fc1层具有相同的形状。可能的解决方法包括: - 修改当前模型的fc1层的权重和偏置的形状,使其与checkpoint中的形状匹配。 - 使用checkpoint中的fc1层的权重和偏置,替换当前模型中对应的参数。 具体哪种方法适合取决于你的需求和具体情况。请注意,在修改模型参数之前,最好先备份当前模型,以防止意外损坏模型。
相关问题

RuntimeError: Error(s) in loading state_dict for XceptionRGBD: size mismatch for conv1.weight: copying a param with shape torch.Size([32, 3, 3, 3]) from checkpoint, the shape in current model is torch.Size([32, 4, 3, 3])

这个错误是由于你的当前模型和加载的预训练模型中的某些参数形状不匹配,具体地说是conv1.weight的形状不匹配。在预训练模型中,conv1.weight的形状是[32, 3, 3, 3],而在你的当前模型中,它的形状是[32, 4, 3, 3]。这意味着你的当前模型中有4个输入通道,但是预训练模型中只有3个输入通道。 解决这个问题的方法是,你需要修改你的当前模型,使它与预训练模型的形状匹配。你可以通过在conv1.weight中添加一个额外的通道来实现这一点。具体来说,你可以执行以下操作: ```python import torch from torchvision.models import xception # 加载预训练模型 pretrained_model = xception(pretrained=True) # 创建一个新的模型 model = xception() # 将预训练模型的参数复制到新模型中 state_dict = pretrained_model.state_dict() model_dict = model.state_dict() for k, v in state_dict.items(): if k in model_dict: if v.shape != model_dict[k].shape: # 修改conv1.weight的形状 if k == 'conv1.weight': v = torch.cat([v, torch.zeros(32, 1, 3, 3)], dim=1) else: continue model_dict[k] = v model.load_state_dict(model_dict) ``` 在上面的代码中,我们首先加载预训练模型,然后创建一个新的模型。接着,我们将预训练模型的参数复制到新模型中。如果在复制参数时发现形状不匹配,我们就修改conv1.weight的形状。具体来说,我们在conv1.weight的第二个维度上添加了一个额外的通道。这个通道的值都是0,因为我们不知道这个通道应该包含什么信息。最后,我们使用修改后的参数来更新新模型的状态字典。

RuntimeError: Error(s) in loading state_dict for Generator: size mismatch for d_up_conv_1.0.weight: copying a param with shape torch.Size([64, 32, 3, 3]) from checkpoint, the shape in current model is torch.Size([64, 16, 3, 3]).

这个错误是由于你的模型的权重参数与你要加载的预训练模型的权重参数形状不匹配导致的。具体地,你的模型中的某个权重参数的形状是 [64, 16, 3, 3],而你要加载的预训练模型中相应的权重参数的形状是 [64, 32, 3, 3],两者不一致,无法直接拷贝。 你需要检查一下你的模型和预训练模型的网络结构是否一致,尤其是这个权重参数所在的层的结构是否一致。如果不一致,你需要修改你的模型的网络结构,使得它能够匹配预训练模型的网络结构。如果结构一致,但是形状不一致,你需要手动修改这个权重参数的形状,使得它能够匹配预训练模型的形状。

相关推荐

create LoRA network. base dim (rank): 64, alpha: 32 neuron dropout: p=None, rank dropout: p=None, module dropout: p=None create LoRA for Text Encoder: 72 modules. create LoRA for U-Net: 192 modules. enable LoRA for text encoder enable LoRA for U-Net Traceback (most recent call last): File "D:\lora_lian\sd-scripts\train_network.py", line 873, in <module> train(args) File "D:\lora_lian\sd-scripts\train_network.py", line 242, in train info = network.load_weights(args.network_weights) File "D:\lora_lian\sd-scripts\networks\lora.py", line 884, in load_weights info = self.load_state_dict(weights_sd, False) File "D:\lora_lian\python\lib\site-packages\torch\nn\modules\module.py", line 2041, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for LoRANetwork: size mismatch for lora_unet_mid_block_attentions_0_proj_out.lora_up.weight: copying a param with shape torch.Size([1280, 128, 1, 1]) from checkpoint, the shape in current model is torch.Size([1280, 64, 1, 1]). Traceback (most recent call last): File "D:\lora_lian\python\lib\runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "D:\lora_lian\python\lib\runpy.py", line 86, in _run_code exec(code, run_globals) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1114, in <module> main() File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1110, in main launch_command(args) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 1104, in launch_command simple_launcher(args) File "D:\lora_lian\python\lib\site-packages\accelerate\commands\launch.py", line 567, in simple_launcher raise subprocess.CalledProcessError(returncode=process.returncode, cmd=cmd) subprocess.CalledProcessError: Command '['D:\\lora_lian\\python\\python.exe', './sd-scripts/train_network.py', '--config_file', 'D:\\lora_lian\\toml\\autosave\\20230709-112914.toml']' returned non-zero exit status 1. Training failed / 训练失败

最新推荐

2024-2030全球与中国盐氯化系统市场现状及未来发展趋势.docx

2024-2030全球与中国盐氯化系统市场现状及未来发展趋势

基于深度学习的积灰检测识别-图像分类源码+数据集.zip

详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;详情请查看资源内容中使用说明;

沈阳药科大学-答辩通用PPT模板我给母校送模板作品.pptx

PPT模板,答辩PPT模板,毕业答辩,学术汇报,母校模板,我给母校送模板作品,周会汇报,开题答辩,教育主题模板下载。PPT素材下载。

微信备忘录小程序源码 作业设计demo 计算机专业作业

微信备忘录小程序源码 作业设计demo 微信备忘录小程序是一种便捷的个人记事应用,它允许用户在微信内快速记录和查看备忘录。以下是对微信备忘录小程序的简要介绍: --- **微信备忘录小程序** 微信备忘录小程序为用户提供了一个简单、直观的记事平台。用户可以通过这个小程序记录日常事务、重要提醒和个人笔记,非常适合忙碌的现代生活节奏。 主要特点包括: 1. **快速记录**:用户可以迅速添加文本、列表或语音备忘录。 2. **定时提醒**:为每个备忘录设置提醒时间,确保不会错过任何重要事项。 3. **个性化分类**:支持自定义分类,便于管理和查找备忘录。 4. **界面友好**:清晰的界面设计,操作简便,无需复杂的学习过程。 5. **数据同步**:通过微信账号登录,实现备忘录的云端同步,方便在不同设备间切换使用。 此外,小程序还具备以下优势: - **隐私保护**:备忘录内容仅对用户本人可见,保障个人隐私。 - **无广告干扰**:提供一个无广告的清爽记事环境。 - **离线存储**:即使在无网络环境下,也能正常使用,记录的内容会在联网后自动同步。 微信备忘录小程序是日

中国海洋大学-汇报答辩专用PPT模板我给母校送模板作品.pptx

PPT模板,答辩PPT模板,毕业答辩,学术汇报,母校模板,我给母校送模板作品,周会汇报,开题答辩,教育主题模板下载。PPT素材下载。

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

爬虫与大数据分析:挖掘数据价值,洞察趋势

![python网站爬虫技术实战](https://img-blog.csdnimg.cn/20181107141901441.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2hpaGVsbA==,size_16,color_FFFFFF,t_70) # 1. 爬虫基础与技术** 爬虫,又称网络蜘蛛,是一种自动化的程序,用于从互联网上抓取数据。其工作原理是模拟浏览器行为,通过发送请求并解析响应来获取网页内容。 爬虫技术涉及多种技术,

matchers和find

matchers和find是C++标准库中的两个相关函数。 matchers是用于对字符串进行模式匹配的函数。它接受一个正则表达式作为参数,并在给定的字符串中搜索匹配的模式。如果找到匹配的模式,则返回true;否则返回false。matchers可以用于各种字符串操作,如搜索、替换、验证等。 find是用于在容器中查找特定元素的函数。它接受一个起始迭代器和一个结束迭代器作为参数,并在指定范围内搜索匹配的元素。如果找到匹配的元素,则返回指向该元素的迭代器;否则返回结束迭代器。find可以用于各种容器类型,如数组、向量、列表、集合等。 这两个函数在不同的上下文中有不同的应用场景,但都是用于查

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。