typedef struct{\n\t//top指针指向栈顶 \n\tSElemType *top;\n\t//base指针指向栈底 \n\tSElemType *base;\n\t//顺序栈的大小 \n\tint stackSize;\n}SqStack;

时间: 2024-04-10 16:26:06 浏览: 109
typedef struct{ //top指针指向栈顶 SElemType *top; //base指针指向栈底 SElemType *base; //顺序栈的大小 int stackSize; }SqStack; 这段代码定义了一个名为SqStack的结构体类型,它包含了以下几个成员变量: 1. top:指向栈顶的指针,用于表示当前栈顶元素的位置。 2. base:指向栈底的指针,用于表示栈底元素的位置。 3. stackSize:顺序栈的大小,表示该栈可以容纳的元素个数。 这个结构体类型可以用来实现一个顺序栈,顺序栈是一种基于数组实现的栈结构,它的特点是后进先出(LIFO)。
相关问题

一个连通图采用邻接表作为存储结构。设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。#include<iostream> #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define MAXSIZE 100 using namespace std; typedef struct ArcNode {//边结点 int data; struct ArcNode *nextarc; //链域:指向下一条边的指针 }ArcNode; typedef struct VNode {//顶点信息 int data; ArcNode *firstarc; //链域:指向第一条依附该顶点的边的指针 }VNode,AdjList[MAXSIZE]; //AdjList表示邻接表类型 typedef struct {//邻接表 AdjList vertices; int vexnum,arcnum; //图的当前顶点数和边数 }ALGraph; typedef struct {//顺序栈 int *base; //栈底指针 int *top; //栈顶指针 int stacksize; //栈可用的最大容量 }SqStack; void InitStack(SqStack &S) {//顺序栈的初始化 S.base=new int[MAXSIZE]; //动态分配一个最大容量MAXSIZE的数组空间 S.top=S.base; //top初始为base,空栈 S.stacksize=MAXSIZE; } void Push(SqStack &S,int e) {//入栈操作 if(S.top-S.base==S.stacksize) //栈满 return; *S.top=e; //元素e压入栈顶 S.top++; //栈顶指针加1 } void Pop(SqStack &S,int &e) {//出栈操作 if(S.base==S.top) //栈空 return; S.top--; //栈顶指针减1 e=*S.top; //将栈顶元素赋给e } bool StackEmpty(SqStack S) {//判空操作 if(S.base==S.top) //栈空返回true return true; return false; } bool visited[MAXSIZE]; //访问标志数组,初始为false int CreateUDG(ALGraph &G,int vexnum,int arcnum) {//采用邻接表表示法,创建无向图G G.vexnum=vexnum; //输入总顶点数 G.arcnum=arcnum; //输入总边数 if(G.vexnum>MAXSIZE) return ERROR; //超出最大顶点数则结束函数 int i,h,k; for(i=1;i<=G.vexnum;i++) //构造表头结点表 { G.vertices[i].data=i; visited[i]=false; G.vertices[i].firstarc=NULL; } ArcNode *p1,*p2; for(i=0;i<G.arcnum;i++) //输入各边,头插法构造邻接表 { cin>>h>>k; p1=new ArcNode; p1->data=k; p1->nextarc=G.vertices[h].firstarc; G.vertices[h].firstarc=p1; p2=new ArcNode; p2->data=h; p2->nextarc=G.vertices[k].firstarc; G.vertices[k].firstarc=p2; } return OK; } void DFS(ALGraph G,int v,SqStack S) {//从第v个顶点出发非递归实现深度优先遍历图G /**begin/ /**end/ } int main() { int n,m; while(cin>>n>>m) { if(n==0&&m==0) break; ALGraph G; SqStack S; CreateUDG(G,n,m); //创建无向图G int d; //从d开始遍历 cin>>d; DFS(G,d,S); //基于邻接表的深度优先遍历 } return 0; }

您的问题是如何实现从顶点v出发的深度优先遍历的非递归过程,对吗?那么我来讲一下基于邻接表的非递归实现深度优先遍历的算法实现。 算法思路: 1. 创建一个栈S,将起始顶点v入栈,并将其标记为已访问。 2. 当栈S非空时,执行以下操作: 1. 取出栈顶元素v,输出v。 2. 遍历v的所有未被访问的邻接点,将其标记为已访问并入栈。 3. 重复步骤2,直到栈S为空。 算法实现: void DFS(ALGraph G,int v,SqStack S) {//从第v个顶点出发非递归实现深度优先遍历图G ArcNode *p; Push(S,v); //将v入栈 visited[v]=true; //标记v为已访问 while(!StackEmpty(S)) //栈非空时循环 { Pop(S,v); //取出栈顶元素v cout<<v<<" "; //输出v p=G.vertices[v].firstarc; //遍历v的所有邻接点 while(p!=NULL) //遍历到该链表尾 { if(!visited[p->data]) //如果该邻接点未被访问 { visited[p->data]=true; //标记该邻接点为已访问 Push(S,p->data); //将该邻接点入栈 } p=p->nextarc; //指向下一个邻接点 } } } 注意事项: 1. 在算法实现中,visited数组用于标记是否已经访问过该顶点。 2. 栈S用于存储待访问的顶点,栈顶元素即为当前访问的顶点。 3. 每次取出栈顶元素v后,需要遍历v的邻接点并进行标记和入栈操作。遍历邻接点的操作可以通过遍历v的邻接表实现。 4. 在算法实现中,需要注意栈的初始化、入栈、出栈和判空操作的实现。 5. 算法实现中使用了SqStack结构体来表示顺序栈。

#include <iostream> #define MAXSIZE 100 #define OK 1 #define ERROR 0 #define OVERFLOW -2 using namespace std; typedef struct {//符号栈 char* base; char* top; int stacksize; }SqStack1; int InitStack1(SqStack1& S) {//符号栈初始化 return OK; } int Push1(SqStack1& S, char e) {//符号栈入栈 return OK; } int Pop1(SqStack1& S) {//符号栈出栈 return OK; } char GetTop1(SqStack1 S) {//符号栈取栈顶元素 return ERROR; } typedef struct {//数字栈 double* base; double* top; int stacksize; }SqStack2; int InitStack2(SqStack2& S) {//数字栈初始化 return OK; } int Push2(SqStack2& S, double e) {//数字栈入栈 return OK; } int Pop2(SqStack2& S) {//数字栈出栈 return OK; } double GetTop2(SqStack2 S) {//数字栈取栈顶元素 return ERROR; } double Calculate(double a, char op, double b) {//算术表达式的求值 a在前,b在后 } char Precede(char a, char b) {//比较符号优先级 }

这段代码定义了两个栈,一个用于存储符号,一个用于存储数字。其中,符号栈使用了字符指针实现,数字栈使用了双精度浮点数指针实现。 具体实现过程需要补充完成各个函数的代码,包括符号栈和数字栈的初始化、入栈、出栈和取栈顶元素操作,以及算术表达式的求值和比较符号优先级的函数。 以下是代码的框架: ```c++ #include <iostream> #define MAXSIZE 100 #define OK 1 #define ERROR 0 #define OVERFLOW -2 using namespace std; typedef struct {//符号栈 char* base; char* top; int stacksize; }SqStack1; int InitStack1(SqStack1& S) {//符号栈初始化 return OK; } int Push1(SqStack1& S, char e) {//符号栈入栈 return OK; } int Pop1(SqStack1& S) {//符号栈出栈 return OK; } char GetTop1(SqStack1 S) {//符号栈取栈顶元素 return ERROR; } typedef struct {//数字栈 double* base; double* top; int stacksize; }SqStack2; int InitStack2(SqStack2& S) {//数字栈初始化 return OK; } int Push2(SqStack2& S, double e) {//数字栈入栈 return OK; } int Pop2(SqStack2& S) {//数字栈出栈 return OK; } double GetTop2(SqStack2 S) {//数字栈取栈顶元素 return ERROR; } double Calculate(double a, char op, double b) {//算术表达式的求值 //a在前,b在后 } char Precede(char a, char b) {//比较符号优先级 } int main() { SqStack1 optr; SqStack2 opnd; InitStack1(optr); //初始化符号栈 InitStack2(opnd); //初始化数字栈 //读入中缀表达式 //转换为后缀表达式 //遍历后缀表达式求值 return 0; } ```
阅读全文

相关推荐

最新推荐

recommend-type

表达式求值顺序栈实现包括小数点运算(C语言版).docx

其中,`stacksize` 是栈的大小,`top` 指向栈顶元素,`base` 是栈底元素的地址。 `InitStack()` 函数用于初始化栈,分配内存并设置初始栈顶位置。`Empty()` 函数检查栈是否为空,`Push()` 将元素压入栈中,`Pop()` ...
recommend-type

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件.zip

yolov3 在 Open Images 数据集上预训练了 SPP 权重以及配置文件如果权重无法下载,则可能是存储库超出了 git lfs 配额。请从没有此限制的bitbucket 存储库中提取。此存储库包含 yolov3 权重以及配置文件。该模型在Kaggle Open Images 挑战赛的私有 LB 上实现了 42.407 的 mAP 。为了使用这些权重,您需要安装darknet 。您可以在项目网站上阅读更多相关信息。有多种方法可以使用 darknet 进行检测。一种方法是创建一个 txt 文件,其中包含要运行检测的图像的路径,并从包含的 yolo.data 文件中指向该文件。运行检测的命令(假设 darknet 安装在该 repo 的根目录中)是 ./darknet/darknet detector valid yolo.data yolov3-spp.cfg yolov3-spp_final.weights我分享这些权重是因为它们可能对某些人有用。如果您遇到任何问题,我无法提供任何支持。Yolo 不太容易排除故障,如果您遇到段错误,则需要您自己找出问题所
recommend-type

qt 5.3.2 mingw 安装包

qt 5.3.2 mingw 安装包
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自