clickhouse split
时间: 2023-10-16 09:06:06 浏览: 121
splitByChar是Clickhouse的一个字符串拆分函数,它可以将字符串根据指定的分隔符进行切分,并返回一个数组。比如,在执行select splitByChar('_', '123_456_142354_23543__') AS arr;之后,得到的结果将会是一个包含多个元素的数组。你可以通过数组的下标来获取具体的元素。希望这个解答对你有帮助。
相关问题
flink 写入clickhouse
可以使用 Flink 的 JDBC Sink 将数据写入 ClickHouse 数据库。具体步骤如下:
1. 在 pom.xml 中添加 ClickHouse JDBC 驱动的依赖:
```xml
<dependency>
<groupId>ru.yandex.clickhouse</groupId>
<artifactId>clickhouse-jdbc</artifactId>
<version>0.3.0</version>
</dependency>
```
2. 在 Flink 程序中创建 ClickHouse JDBC Sink:
```java
import java.sql.PreparedStatement;
import java.sql.SQLException;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import ru.yandex.clickhouse.ClickHouseConnection;
import ru.yandex.clickhouse.ClickHouseDataSource;
public class ClickHouseSink extends RichSinkFunction<String> {
private static final long serialVersionUID = 1L;
private static final Logger LOG = LoggerFactory.getLogger(ClickHouseSink.class);
private ClickHouseConnection connection;
private PreparedStatement statement;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
// 初始化 ClickHouse 连接
ClickHouseDataSource dataSource = new ClickHouseDataSource("jdbc:clickhouse://<clickhouse-host>:<clickhouse-port>/<clickhouse-database>");
connection = dataSource.getConnection();
statement = connection.prepareStatement("INSERT INTO <clickhouse-table> (col1, col2, ...) VALUES (?, ?, ...)");
}
@Override
public void invoke(String value, Context context) throws Exception {
String[] fields = value.split(",");
// 设置 PreparedStatement 的参数
statement.setString(1, fields[0]);
statement.setInt(2, Integer.parseInt(fields[1]));
...
// 执行插入操作
statement.executeUpdate();
}
@Override
public void close() throws Exception {
super.close();
// 关闭 ClickHouse 连接
if (statement != null) {
statement.close();
}
if (connection != null) {
connection.close();
}
}
}
```
3. 在 Flink 程序中使用 ClickHouse JDBC Sink 输出数据:
```java
DataStream<String> dataStream = ... // 获取数据流
dataStream.addSink(new ClickHouseSink());
```
其中 `<clickhouse-host>`、`<clickhouse-port>`、`<clickhouse-database>` 和 `<clickhouse-table>` 分别表示 ClickHouse 数据库的主机名、端口号、数据库名称和数据表名称。在执行插入操作时,需要根据实际情况设置 PreparedStatement 的参数。
Flink ClickHouse 代码
以下是使用Flink将数据写入ClickHouse的Java代码示例:
```java
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSink;
import org.apache.flink.streaming.connectors.clickhouse.ClickHouseSinkFunction;
import org.apache.flink.streaming.connectors.clickhouse.common.ClickHouseRowConverter;
import org.apache.flink.streaming.connectors.clickhouse.common.container.ClickHouseClientProvider;
import org.apache.flink.streaming.connectors.clickhouse.common.container.JDBCDriverContainer;
import org.apache.flink.streaming.connectors.clickhouse.common.enums.InsertMode;
import java.sql.PreparedStatement;
import java.sql.SQLException;
import java.util.Properties;
public class FlinkClickHouseExample {
public static void main(String[] args) throws Exception {
// set up the execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// configure the properties for the ClickHouse sink
Properties properties = new Properties();
properties.setProperty(ClickHouseSinkOptions.TARGET_TABLE_NAME, "test");
properties.setProperty(ClickHouseSinkOptions.INSERT_MODE, InsertMode.REPLACE.name());
properties.setProperty(ClickHouseSinkOptions.USERNAME, "user");
properties.setProperty(ClickHouseSinkOptions.PASSWORD, "password");
properties.setProperty(ClickHouseSinkOptions.DATABASE_NAME, "test");
properties.setProperty(ClickHouseSinkOptions.TARGET_TABLE_SCHEMA, "id Int32, name String");
// create a ClickHouseSink with the properties and a row converter
ClickHouseRowConverter rowConverter = new ClickHouseRowConverter.SimpleClickHouseRowConverter();
ClickHouseSinkFunction clickHouseSinkFunction = new ClickHouseSink(properties, rowConverter, new JDBCDriverContainer(), new ClickHouseClientProvider());
// create a data stream from a source, map it to a ClickHouse row, and add the ClickHouse sink
DataStream<String> source = env.socketTextStream("localhost", 9000);
DataStream<ClickHouseRow> clickHouseRows = source.map(new MapFunction<String, ClickHouseRow>() {
@Override
public ClickHouseRow map(String value) throws Exception {
String[] fields = value.split(",");
return new ClickHouseRow(fields[0], fields[1]);
}
});
clickHouseRows.addSink(clickHouseSinkFunction);
// execute the Flink job
env.execute("Flink ClickHouse Example");
}
public static class ClickHouseRow {
private int id;
private String name;
public ClickHouseRow(String id, String name) {
this.id = Integer.parseInt(id);
this.name = name;
}
public int getId() {
return id;
}
public String getName() {
return name;
}
}
}
```
在此代码中,我们首先配置了ClickHouse sink的属性,并创建了一个ClickHouseSinkFunction。接下来,我们从数据源创建了一个数据流,并将其映射为一个ClickHouse行。最后,我们将ClickHouse行添加到ClickHouse sink并执行Flink作业。
阅读全文