运筹学牛顿法matlab程序代码
时间: 2024-06-29 08:00:25 浏览: 142
运筹学中的牛顿法(Newton's Method)通常用于求解非线性方程组或优化问题中的根。在MATLAB中,实现牛顿法的一种常见方法是使用迭代过程。以下是一个简单的牛顿法求解非线性方程组的示例代码:
```Matlab
% 定义目标函数和梯度函数
function f = myFunction(x)
f = [x(1)^2 + x(2)^2 - 1; x(1) - x(2)];
end
% 定义梯度函数
function df = myGradient(x)
df = [2*x(1); 1 - 1];
end
% 初始猜测点
x0 = [1; 1];
% 牛顿法参数设置
options = optimoptions('fminunc', 'Display', 'iter', 'Algorithm', 'quasi-newton');
% 运行牛顿法
[x, ~] = fminunc(@myFunction, x0, options, @myGradient);
% 打印结果
fprintf('Solution found: x = \n');
disp(x);
```
在这个例子中:
- `myFunction` 定义了目标方程组(在这个案例中是一个简单的二次函数)
- `myGradient` 计算目标函数的梯度
- `fminunc` 函数是MATLAB的优化工具箱中的非线性最小化函数,我们使用牛顿法作为算法选择
- `x0` 是初始猜测值
- `options` 设置了迭代显示和算法类型
运行这个代码后,它会找到满足目标方程组的解。
阅读全文
相关推荐

















