使用sklearn python库来实现lasson回归模型预测,并且包含模型预测以及可视化
时间: 2024-10-24 17:06:35 浏览: 18
Lasson_17_2:sd
要使用scikit-learn(sklearn)库实现Lasso回归模型并进行预测,以及创建残差图以可视化预测与实际值的差异,你可以按照以下步骤操作:
1. **导入所需的库**[^1]:
```python
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```
2. **加载和预处理数据**:
假设你已经有了一个名为`df`的数据框,其中包含特征变量`X`和目标变量`y`:
```python
X = df.drop('target_column', axis=1) # 假设'target_column'是目标列名
y = df['target_column']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
3. **创建并训练Lasso回归模型**:
```python
lasso = Lasso(alpha=0.1) # 设置正则化参数alpha
lasso.fit(X_train, y_train)
```
4. **模型预测**:
```python
y_pred = lasso.predict(X_test)
```
5. **计算和绘制残差图**[^2]:
```python
# 创建DataFrame存储预测值和真实值
preds = pd.DataFrame({'preds': y_pred, 'true': y_test})
# 计算残差
preds['residuals'] = preds['true'] - preds['preds']
# 绘制残差图
plt.figure(figsize=(6.0, 6.0))
preds.plot(kind='scatter', x='preds', y='residuals', color='c')
plt.title('Residual plot for Lasso Regression')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.show()
```
阅读全文