使用sklearn python库来实现lasson回归模型预测,并且包含模型评价,最小二乘法确定最佳模型参数以及可视化
时间: 2024-10-24 11:07:32 浏览: 25
Lasson_17_2:sd
要使用scikit-learn(sklearn)库实现Lasso回归模型预测,包括模型评估、最小二乘法优化参数以及可视化,你可以按照以下步骤操作:
1. 导入所需的库[^1]:
```python
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import pandas as pd
```
2. 加载数据并预处理[^2]:
```python
# 假设df是你的数据集
X = df.drop('target_column', axis=1) # 假设'target_column'是你想预测的目标变量
y = df['target_column']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 对特征进行标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
```
3. 创建Lasso回归模型:
```python
lasso = Lasso(alpha=1.0) # alpha是正则化强度,初始设置为1.0,可以根据交叉验证调整
```
4. 训练模型:
```python
lasso.fit(X_train, y_train)
```
5. 模型评估:
```python
# 使用均方误差(MSE)作为损失函数
mse = mean_squared_error(y_test, lasso.predict(X_test))
r2_score = r2_score(y_test, lasso.predict(X_test)) # R²分数衡量拟合优度
print(f"Mean Squared Error (MSE): {mse}")
print(f"R² Score: {r2_score}")
```
6. 调整参数(如alpha)通过交叉验证:
```python
alphas = np.logspace(-4, 1, 100) # 创建一组alpha值
cv_scores = cross_val_score(lasso, X_train, y_train, cv=5, scoring='neg_mean_squared_error') # 使用负MSE评分进行排序
best_alpha_index = np.argmin(cv_scores)
best_alpha = alphas[best_alpha_index]
lasso_best = Lasso(alpha=best_alpha)
lasso_best.fit(X_train, y_train)
```
7. 可视化参数选择:
```python
plt.plot(alphas, -cv_scores)
plt.axvline(x=best_alpha, linestyle='--', color='red')
plt.xlabel('Alpha')
plt.ylabel('Cross-validation score (-MSE)')
plt.title('Grid Search over Alpha')
plt.show()
```
这样你就实现了Lasso回归模型的训练、评估、参数调优以及结果可视化。
阅读全文