voxel_grid_filter.filter(*filtered_scan_ptr)

时间: 2024-09-04 18:01:34 浏览: 64
`voxel_grid_filter.filter(*filtered_scan_ptr)`是用于点云数据处理的语句,它利用了PCL(Point Cloud Library)库中的VoxelGridFilter类来实现点云数据的降采样。该操作通过创建一个三维体素栅格(可以想象成空间中许多微小的3D立方体盒子组成的网格),在每个体素(即3D立方体)中,所有的点将会被逼近(即简化或合并)为一个单一的代表性点。 这个过滤过程的主要目的是减少点云数据中点的数量,从而降低后续处理的计算复杂度,同时保留点云数据的主要形状和结构特征。这种方法特别适用于处理由Livox LiDAR或其他三维扫描设备产生的高密度点云数据。
相关问题

for voxel_idx in np.ndindex(*voxel_grid.shape): if voxel_grid[voxel_idx]: voxel_points = point_cloud[(point_cloud / voxel_size).astype(int) == voxel_idx] voxel_average_positions[voxel_idx] = np.mean(voxel_points, axis=0) 代码出错, 无法显示子级:解析变量时出错,回溯(最近的调用在最上方)

这段代码中出现的错误是"无法显示子级:解析变量时出错",这可能是由于变量或数组的解析出现问题导致的。请检查以下几个方面来解决这个问题: 1. 确保你已经正确导入了需要使用的库,如numpy。 2. 检查变量voxel_grid和point_cloud是否已经正确定义和初始化。 3. 确保voxel_grid是一个二进制的数组,可以使用布尔索引进行判断。 4. 检查point_cloud数组的形状和类型是否正确。 5. 确保voxel_size是一个合适的数值,可以被整数化。 如果你提供更多的上下文或错误信息,我可以更具体地帮助你解决这个问题。

point_cloud = point_cloud.reshape(-1, 3) pc_o3d = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(point_cloud)) pc_voxel_sampled = pc_o3d.voxel_down_sample(0.003) points_sampled = np.array(pc_voxel_sampled.points).astype(np.float32) points_sampled = np.concatenate([suction_points, points_sampled], axis=0) pc_voxel_sampled.points = o3d.utility.Vector3dVector(points_sampled) pc_voxel_sampled.estimate_normals(o3d.geometry.KDTreeSearchParamRadius(0.015), fast_normal_computation=False) pc_voxel_sampled.orient_normals_to_align_with_direction(np.array([0., 0., -1.])) pc_voxel_sampled.normalize_normals() pc_normals = np.array(pc_voxel_sampled.normals).astype(np.float32) suction_normals = pc_normals[:suction_points.shape[0], :]

这段代码的作用是对输入的点云数据进行预处理,以便后续的物体姿态估计。具体来说,它的主要步骤包括: 1. 将输入的点云数据 point_cloud 重塑为二维数组,每行包含三个值,分别表示点的 x、y、z 坐标。 2. 使用 Open3D 库将重塑后的点云数据转换为 PointCloud 对象 pc_o3d。 3. 对 pc_o3d 进行体素下采样,得到 pc_voxel_sampled 这个体素下采样后的点云数据。 4. 将原始的夹爪位置 suction_points 和下采样后的点云数据 points_sampled 拼接在一起,得到新的点云数据 points_sampled。 5. 将 points_sampled 赋值给 pc_voxel_sampled.points,更新 pc_voxel_sampled 中的点云数据。 6. 使用 Open3D 库的 estimate_normals() 方法对 pc_voxel_sampled 中的点云数据进行法向量估计。 7. 使用 Open3D 库的 orient_normals_to_align_with_direction() 方法将点云数据的法向量方向对齐到 [-1, 0, 0] 方向。 8. 使用 Open3D 库的 normalize_normals() 方法对点云数据的法向量进行归一化。 9. 将 pc_voxel_sampled 中的法向量数据转换为 Numpy 数组 pc_normals。 10. 从 pc_normals 中提取出夹爪位置处的法向量 suction_normals,以便后续使用。
阅读全文

相关推荐

#include "prepare_ogm.hpp" namespace senior { namespace guardian { namespace prepare { std::string PrepareOgm::Name() { return "Prepare Ogm Element"; } void PrepareOgm::Initiate() {} void PrepareOgm::Process(data::DataFrame& his, data::DataFrame& cur) { if (cur.source_ogm_points_.is_invalid()) return; if (cur.source_visual_ogm_points_.is_valid()) { cur.source_ogm_points_.insert(cur.source_ogm_points_.end(), cur.source_visual_ogm_points_.begin(), cur.source_visual_ogm_points_.end()); } if (cur.source_higher_ogm_points_.is_valid()) { cur.source_ogm_points_.insert(cur.source_ogm_points_.end(), cur.source_higher_ogm_points_.begin(), cur.source_higher_ogm_points_.end()); } auto& predict_path = cur.monitor_data_.mutable_predict_path(); predict_path.GenerateBoundary(cur); cur.AABox2d_ = predict_path.vehicle_AABox2d_; // if (!his.monitor_data_.is_need_to_take_over()) { // LOG(INFO)<<"1"; cur.AABox2d_.SetWidth(cur.AABox2d_.width() + 1.0); cur.AABox2d_.SetLength(cur.AABox2d_.length() + 1.0); // } std::vector<math::Vec2d> corner_points_; cur.AABox2d_.GetAllCorners(&corner_points_); auto& polygon2d = predict_path.tractor_polygon2d_; math::Vec2d temp; VoxelGrid filter_; common::Time now = common::Time::Now(); for (auto& point : cur.source_ogm_points_) { temp.set_x(point.x()); temp.set_y(-point.y()); if (cur.AABox2d_.IsPointIn(temp)) { cur.AABB_ogm_points_.emplace_back(point); } } cur.guardian_diagnose_["Prepare_PrepareOgm_AABox_filter"] = std::to_string((common::Time::Now() - now).ToSecond() * 1000); now = common::Time::Now(); filter_.VoxelGrid_ApplyFilter( cur.AABB_ogm_points_, cur.ogm_points_, corner_points_, 0.1, 0.1, 0); cur.guardian_diagnose_["Prepare_PrepareOgm_VoxelGrid_ApplyFilter"] = std::to_string((common::Time::Now() - now).ToSecond() * 1000); cur.ogm_points_.set_stamp(cur.source_ogm_points_.stamp()); cur.ogm_points_.set_time(cur.source_ogm_points_.time()); cur.ogm_points_.set_delay_time(cur.source_ogm_points_.delay_time()); cur.ogm_points_.set_valid(); } } // namespace prepare } // namespace guardian } // namespace senior 改变为C语言程序

FAILED: CMakeFiles/cartographer.transform.timestamped_transform_test.dir/cartographer/transform/timestamped_transform_test.cc.o /usr/bin/c++ -DBOOST_ALL_NO_LIB -DBOOST_IOSTREAMS_DYN_LINK -DGFLAGS_IS_A_DLL=0 -I../cartographer -I. -I../ -isystem /usr/include/eigen3 -isystem /usr/include/lua5.2 -O3 -DNDEBUG -pthread -fPIC -Wall -Wpedantic -Werror=format-security -Werror=missing-braces -Werror=reorder -Werror=return-type -Werror=switch -Werror=uninitialized -O3 -DNDEBUG -pthread -fPIC -Wall -Wpedantic -Werror=format-security -Werror=missing-braces -Werror=reorder -Werror=return-type -Werror=switch -Werror=uninitialized -O3 -DNDEBUG -std=gnu++11 -MD -MT CMakeFiles/cartographer.transform.timestamped_transform_test.dir/cartographer/transform/timestamped_transform_test.cc.o -MF CMakeFiles/cartographer.transform.timestamped_transform_test.dir/cartographer/transform/timestamped_transform_test.cc.o.d -o CMakeFiles/cartographer.transform.timestamped_transform_test.dir/cartographer/transform/timestamped_transform_test.cc.o -c ../cartographer/transform/timestamped_transform_test.cc In file included from ../cartographer/transform/timestamped_transform_test.cc:17: ../cartographer/transform/timestamped_transform.h:21:10: fatal error: cartographer/transform/proto/timestamped_transform.pb.h: No such file or directory 21 | #include "cartographer/transform/proto/timestamped_transform.pb.h" | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ compilation terminated. [44/380] Building CXX object CMakeFiles/cartographer.sensor.internal.voxel_filter_test.dir/cartographer/sensor/internal/voxel_filter_test.cc.o

最新推荐

recommend-type

基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip

【资源说明】 基于C语言课程设计学生成绩管理系统、详细文档+全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于springboot的简历系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

“招聘智能化”:线上招聘问答系统的功能开发

互联网技术经过数十年的发展,已经积累了深厚的理论基础,并在实际应用中无处不在,极大地消除了地理信息的障碍,实现了全球即时通讯,极大地便利了人们的日常生活。因此,利用计算机技术设计的线上招聘问答系统,不仅在管理上更加系统化和操作性强,更重要的是在数据保存和使用上能够节省大量时间,使得系统变得非常高效和实用。 线上招聘问答系统采用MySQL作为数据管理工具,Java作为编码语言,以及SSM框架作为开发架构。系统主要实现了简历管理、论坛帖子管理、职位招聘管理、职位招聘留言管理、招聘岗位管理、所在行业管理以及求职意向管理等功能。 该系统的设计不仅方便了操作人员,而且合理性高,能有效避免误操作,确保数据在录入时就符合设计要求,从而最大限度地减少源头性输入错误,使数据更加可控和可靠,将出错率降至最低。
recommend-type

simulink实现标准IEEE33配电网系统,50HZ,将各节点数据统计起来输出到工作区,再matlab中跑出某时刻节点电压分布,适合用于观察某时刻节点电压变化情况 #特别是当用于接入双馈风机时

simulink实现标准IEEE33配电网系统,50HZ,将各节点数据统计起来输出到工作区,再matlab中跑出某时刻节点电压分布,适合用于观察某时刻节点电压变化情况。 #特别是当用于接入双馈风机时,用powergui无法进行潮流计算,通过此方法能过很好的解决此问题。 有参考文献。
recommend-type

给袋式真空包装机UG10全套技术资料100%好用.zip

给袋式真空包装机UG10全套技术资料100%好用.zip
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"