Gauss 顺序消去法求下列方程组,右端项自己构造。比较观察近似解的准确程度 matlab代码
时间: 2024-09-10 21:27:35 浏览: 43
高斯消元法是一种线性代数中的数值解法,用于求解线性方程组。以下是使用MATLAB编写的一个简单例子,说明如何通过Gauss序列消元法求解一个自定义的线性方程组,并对比初始值与解后的近似程度:
```matlab
% 创建系数矩阵 (A) 和常数项向量 (b)
n = 4; % 系统方程的个数
A = [1 2 3 4; 5 6 7 8; 9 10 11 12; 13 14 15 16]; % 4x4 高斯消元矩阵示例
b = rand(n, 1); % 随机生成的右端项向量
% 初始近似解设置为零向量
initial_guess = zeros(n, 1);
% 使用高斯消元法求解
[~, ~, x] = gauss elimination(A, b); % 高斯消元函数假设已经存在
% 计算解的误差
error = norm(initial_guess - x, 'euclidean');
% 输出结果并观察近似解的准确度
disp("初始近似解:");
disp(initial_guess);
disp("解后精确解:");
disp(x);
disp("误差:");
disp(error);
%
阅读全文