nn.Sequential( Transpose((0, 3, 1, 2)), layer_init(nn.Conv2d(2, 16, kernel_size=3, stride=2)), nn.SiLU(), layer_init(nn.Conv2d(16, 32, kernel_size=2)), nn.SiLU(), layer_init(nn.Conv2d(32, 32, kernel_size=2)), nn.SiLU(), layer_init(nn.Conv2d(32, 32, kernel_size=2)), nn.SiLU(), layer_init(nn.Conv2d(32, 32, kernel_size=2)), nn.SiLU(), nn.Flatten(), layer_init(nn.Linear(32 * 9 * 9, 128)), nn.SiLU(), )
时间: 2024-04-14 07:30:00 浏览: 98
这是一个用于图像处理的神经网络模型,它包含了一系列的卷积神经网络层和激活函数。具体的结构如下:
1. Transpose:将输入的维度进行转置,将通道维度放到第二个位置。
2. nn.Conv2d:卷积层,输入通道数为2,输出通道数为16,卷积核大小为3x3,步长为2。
3. nn.SiLU:激活函数,使用SiLU(即Sigmoid-Weighted Linear Unit)。
4. nn.Conv2d:卷积层,输入通道数为16,输出通道数为32,卷积核大小为2x2。
5. nn.SiLU:激活函数,使用SiLU。
6. nn.Conv2d:卷积层,输入通道数为32,输出通道数为32,卷积核大小为2x2。
7. nn.SiLU:激活函数,使用SiLU。
8. nn.Conv2d:卷积层,输入通道数为32,输出通道数为32,卷积核大小为2x2。
9. nn.SiLU:激活函数,使用SiLU。
10. nn.Conv2d:卷积层,输入通道数为32,输出通道数为32,卷积核大小为2x2。
11. nn.SiLU:激活函数,使用SiLU。
12. nn.Conv2d:卷积层,输入通道数为32,输出通道数为32,卷积核大小为2x2。
13. nn.SiLU:激活函数,使用SiLU。
14. nn.Flatten:将多维的输入展平为一维。
15. nn.Linear:全连接层,输入大小为32x9x9,输出大小为128。
16. nn.SiLU:激活函数,使用SiLU。
这个模型的输入是一个大小为HxWx2的张量(H和W是图像的高度和宽度),输出是一个大小为128的向量。
相关问题
这是DGCHead的代码,我想让你在这段代码里加入正余弦位置编码:class DualGCNHead(nn.Module): def __init__(self, inplanes, interplanes, num_classes): super(DualGCNHead, self).__init__() self.conva = nn.Sequential(nn.Conv2d(inplanes, interplanes, 3, padding=1, bias=False), BatchNorm2d(interplanes), nn.ReLU(interplanes)) self.dualgcn = DualGCN(interplanes) self.convb = nn.Sequential(nn.Conv2d(interplanes, interplanes, 3, padding=1, bias=False), BatchNorm2d(interplanes), nn.ReLU(interplanes)) self.bottleneck = nn.Sequential( nn.Conv2d(inplanes + interplanes, interplanes, kernel_size=3, padding=1, dilation=1, bias=False), BatchNorm2d(interplanes), nn.ReLU(interplanes), nn.Conv2d(interplanes, num_classes, kernel_size=1, stride=1, padding=0, bias=True) ###################### 512-->256 ) def forward(self, x): output = self.conva(x) output = self.dualgcn(output) output = self.convb(output) output = self.bottleneck(torch.cat([x, output], 1)) return output
Sure! Here is the modified code with added sine and cosine positional encoding:
```
import math
class DualGCNHead(nn.Module):
def __init__(self, inplanes, interplanes, num_classes, height, width):
super(DualGCNHead, self).__init__()
self.conva = nn.Sequential(nn.Conv2d(inplanes, interplanes, 3, padding=1, bias=False),
BatchNorm2d(interplanes),
nn.ReLU(interplanes))
self.dualgcn = DualGCN(interplanes)
self.convb = nn.Sequential(nn.Conv2d(interplanes, interplanes, 3, padding=1, bias=False),
BatchNorm2d(interplanes),
nn.ReLU(interplanes))
self.height = height
self.width = width
self.pos_encoding = self.get_positional_encoding(interplanes, height, width)
self.bottleneck = nn.Sequential(
nn.Conv2d(inplanes + interplanes*2, interplanes, kernel_size=3, padding=1, dilation=1, bias=False),
BatchNorm2d(interplanes),
nn.ReLU(interplanes),
nn.Conv2d(interplanes, num_classes, kernel_size=1, stride=1, padding=0, bias=True)
)
def forward(self, x):
output = self.conva(x)
output = self.dualgcn(output)
output = self.convb(output)
output = torch.cat([x, output, self.pos_encoding], 1)
output = self.bottleneck(output)
return output
def get_positional_encoding(self, d_model, height, width):
pe_h = torch.zeros(height, d_model)
pe_w = torch.zeros(width, d_model)
for pos in range(height):
for i in range(0, d_model, 2):
pe_h[pos, i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))
pe_h[pos, i+1] = math.cos(pos / (10000 ** ((2 * (i+1))/d_model)))
for pos in range(width):
for i in range(0, d_model, 2):
pe_w[pos, i] = math.sin(pos / (10000 ** ((2 * i)/d_model)))
pe_w[pos, i+1] = math.cos(pos / (10000 ** ((2 * (i+1))/d_model)))
pos_encoding = torch.cat([pe_h.unsqueeze(0).repeat(width, 1, 1).transpose(0, 1).unsqueeze(0),
pe_w.unsqueeze(0).repeat(height, 1, 1).unsqueeze(0)], dim=0)
return pos_encoding
```
The `get_positional_encoding` function generates the sine and cosine positional encoding based on the input dimension, height, and width. The encoding is then concatenated with the output of the dual GCN layer before passing through the bottleneck layer.
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class Bottleneck(nn.Module): def init(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).init() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out class DPN(nn.Module): def init(self, cfg): super(DPN, self).init() in_planes, out_planes = cfg['in_planes'], cfg['out_planes'] num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth'] self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.last_planes = 64 self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1) self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2) self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2) self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2) self.linear = nn.Linear(out_planes[3]+(num_blocks[3]+1)dense_depth[3], 10) def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride): strides = [stride] + 1 layers = [] for i,stride in (strides): layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0)) self.last_planes = out_planes + (i+2) * dense_depth return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def DPN92(): cfg = { 'in_planes': (96,192,384,768), 'out_planes': (256,512,1024,2048), 'num_blocks': (3,4,20,3), 'dense_depth': (16,32,24,128) } return DPN(cfg)基于这个程序改成对摄像头采集的图像检测与分类输出坐标、大小和种类
首先,需要将输入的图像大小和通道数进行调整以适应模型输入。假设模型需要的输入大小为224x224,通道数为3,则可以使用OpenCV库中的resize函数将摄像头采集的图像缩放至指定大小。同时,需要将图像转换成PyTorch中的Tensor格式,并对像素值进行归一化操作。
代码如下:
```python
import cv2
import numpy as np
# 调整图像大小和通道数
img_size = (224, 224)
img_channels = 3
# 初始化摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取摄像头图像
ret, frame = cap.read()
if not ret:
break
# 缩放图像
frame = cv2.resize(frame, img_size)
# 转换为Tensor格式,并进行归一化
frame = np.transpose(frame, (2, 0, 1)).astype(np.float32) / 255.0
frame = np.expand_dims(frame, axis=0)
frame = torch.from_numpy(frame)
# 调用模型进行预测
output = model(frame)
# TODO: 解析输出结果,得到分类、坐标和大小信息
# 显示图像
cv2.imshow('frame', frame)
# 按下q键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头
cap.release()
cv2.destroyAllWindows()
```
接下来,需要解析模型的输出结果,得到分类、坐标和大小信息。由于代码中没有给出模型输出的具体格式,这里需要根据模型输出结果进行相应的解析。
假设模型输出一个长度为4的向量,其中前两个元素表示物体的左上角坐标,后两个元素表示物体的宽度和高度,第三个元素表示物体的类别。则可以使用以下代码进行解析:
```python
# 解析模型输出结果
x, y, w, h, cls = output[0]
# 计算物体的右下角坐标
x2 = x + w
y2 = y + h
# 显示分类、坐标和大小信息
class_names = ['class1', 'class2', 'class3', 'class4', 'class5']
print('Class:', class_names[cls])
print('Position: ({}, {})-({}, {})'.format(x, y, x2, y2))
print('Size: {}x{}'.format(w, h))
```
最后,将以上代码整合到一起,即可完成对摄像头采集的图像进行检测与分类输出坐标、大小和种类的任务。
完整代码如下:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import numpy as np
class Bottleneck(nn.Module):
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer):
super(Bottleneck, self).__init__()
self.out_planes = out_planes
self.dense_depth = dense_depth
self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False)
self.bn2 = nn.BatchNorm2d(in_planes)
self.conv3 = nn.Conv2d(in_planes, out_planes * dense_depth, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(out_planes * dense_depth)
self.shortcut = nn.Sequential()
if first_layer:
self.shortcut = nn.Sequential(
nn.Conv2d(last_planes, out_planes * dense_depth, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_planes * dense_depth)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
x = self.shortcut(x)
d = self.out_planes * self.dense_depth
out = torch.cat([x[:,:d,:,:], out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1)
out = F.relu(out)
return out
class DPN(nn.Module):
def __init__(self, cfg):
super(DPN, self).__init__()
in_planes, out_planes = cfg['in_planes'], cfg['out_planes']
num_blocks, dense_depth = cfg['num_blocks'], cfg['dense_depth']
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.last_planes = 64
self.layer1 = self._make_layer(in_planes[0], out_planes[0], num_blocks[0], dense_depth[0], stride=1)
self.layer2 = self._make_layer(in_planes[1], out_planes[1], num_blocks[1], dense_depth[1], stride=2)
self.layer3 = self._make_layer(in_planes[2], out_planes[2], num_blocks[2], dense_depth[2], stride=2)
self.layer4 = self._make_layer(in_planes[3], out_planes[3], num_blocks[3], dense_depth[3], stride=2)
self.linear = nn.Linear(out_planes[3] * (num_blocks[3] + 1) * dense_depth[3], 10)
def _make_layer(self, in_planes, out_planes, num_blocks, dense_depth, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for i, stride in enumerate(strides):
layers.append(Bottleneck(self.last_planes, in_planes, out_planes, dense_depth, stride, i==0))
self.last_planes = out_planes * dense_depth
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def DPN92():
cfg = {
'in_planes': (96, 192, 384, 768),
'out_planes': (256, 512, 1024, 2048),
'num_blocks': (3, 4, 20, 3),
'dense_depth': (16, 32, 24, 128)
}
return DPN(cfg)
# 调整图像大小和通道数
img_size = (224, 224)
img_channels = 3
# 初始化模型
model = DPN92()
model.load_state_dict(torch.load('dpn92.pth', map_location='cpu'))
model.eval()
# 初始化摄像头
cap = cv2.VideoCapture(0)
while True:
# 读取摄像头图像
ret, frame = cap.read()
if not ret:
break
# 缩放图像
frame = cv2.resize(frame, img_size)
# 转换为Tensor格式,并进行归一化
frame = np.transpose(frame, (2, 0, 1)).astype(np.float32) / 255.0
frame = np.expand_dims(frame, axis=0)
frame = torch.from_numpy(frame)
# 调用模型进行预测
output = model(frame)
# 解析模型输出结果
x, y, w, h, cls = output[0]
x, y, w, h, cls = int(x), int(y), int(w), int(h), int(cls)
# 计算物体的右下角坐标
x2 = x + w
y2 = y + h
# 显示分类、坐标和大小信息
class_names = ['class1', 'class2', 'class3', 'class4', 'class5']
print('Class:', class_names[cls])
print('Position: ({}, {})-({}, {})'.format(x, y, x2, y2))
print('Size: {}x{}'.format(w, h))
# 在图像上绘制矩形框
cv2.rectangle(frame, (x, y), (x2, y2), (0, 255, 0), 2)
# 显示图像
cv2.imshow('frame', frame)
# 按下q键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头
cap.release()
cv2.destroyAllWindows()
```
阅读全文