使用sklearn实现并评估一个较为冷门的回归模型
时间: 2024-11-30 22:19:10 浏览: 16
在Scikit-learn库中,有一些相对不太常见的回归模型可供选择,比如局部加权回归(Local Regression)、Isotonic Regression等。这里以Isotonic Regression为例来说明如何实现和评估:
首先,你需要安装scikit-learn和相关的数据处理库(如pandas、numpy):
```bash
pip install scikit-learn pandas numpy
```
然后导入必要的模块:
```python
import sklearn
from sklearn.isotonic import IsotonicRegression
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import mean_squared_error
import pandas as pd
import numpy as np
```
假设你已经有了一个数据集(例如`df`),其中包含特征列`X`和目标变量`y`:
```python
X = df[['feature1', 'feature2']] # 替换为实际的特征列名
y = df['target'] # 替换为目标变量名
```
接下来,将数据划分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
创建并训练Isotonic Regression模型:
```python
ir_model = IsotonicRegression()
ir_model.fit(X_train, y_train)
```
评估模型性能,通常使用交叉验证计算平均均方误差(MSE):
```python
cv_scores = cross_val_score(ir_model, X, y, cv=5, scoring='neg_mean_squared_error')
mse_scores = -cv_scores # 因cross_val_score返回的是负值,所以取反得到MSE
print("Cross-validation MSE scores:", mse_scores)
mean_cv_mse = np.mean(mse_scores)
print("Mean Cross-validation MSE:", mean_cv_mse)
```
最后,预测测试集结果,并计算测试集的RMSE(Root Mean Squared Error):
```python
y_pred = ir_model.predict(X_test)
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print("Test set RMSE:", rmse)
```
阅读全文