oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off er
时间: 2024-07-28 09:01:29 浏览: 544
oneDNN(One Dimensional Neural Network)是一个专为高性能深度学习加速而设计的库,它支持自定义操作(Custom Operations)。当你启用custom operations时,用户可以添加自定义算法或者优化到硬件加速器(如GPU、TPU等),这允许开发者针对特定任务定制性能。然而,由于浮点运算的精度可能会因为round-off error(浮点数舍入误差)而略有变化,你在看到的结果中可能会遇到一些微小的数值差异。这是正常现象,在处理大量数据和复杂网络时,这种差别通常是可以接受的。
相关问题
I tensorflow/core/util/util.cc:169] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
这是一个 TensorFlow 的提示信息。它告诉用户,TensorFlow 正在使用 oneDNN(DNN 库)的自定义操作,因此可能会因不同的计算顺序而导致略微不同的数值结果,这是由于浮点数舍入误差所造成的。如果您想禁用 oneDNN,您可以设置环境变量 `TF_ENABLE_ONEDNN_OPTS=0`。
GM-GRA-DPC-PSOSVR forecasting model For any regional carbon emission forecasting, it is important to select a suitable model. For model selection, researchers often choose only one optimal model according to experience or model selection criteria, which obviously ignores the uncertainty of model selection. That is, once the data changes slightly, the optimal model may change, which means the optimal model is uncertain. The combined forecasting was proposed by Bates and Granger(1969), which is a robust forecasting technique.
这段话也没有发现任何语法错误。该段介绍了GM-GRA-DPC-PSOSVR预测模型的构建。对于任何地区的碳排放预测,选择一个合适的模型是非常重要的。在模型选择方面,研究人员通常根据经验或模型选择标准选择一个最优模型,这显然忽略了模型选择的不确定性。也就是说,一旦数据发生细微变化,最优模型可能会发生变化,这意味着最优模型是不确定的。Bates和Granger(1969)提出了组合预测方法,这是一种强大的预测技术。
阅读全文