class A {/*.*/ }; void f(const A** P) { }; void g(const A* const* P) { }; void k(const A *&P) { }; int main() { const A* ca = new A(); A* a = new A(); A** p = &a; k(ca); f(p); g(p); return 0; }p能作为参数传入f函数和g函数吗?为什么

时间: 2023-06-14 14:08:22 浏览: 52
p可以作为参数传入g函数,但不能作为参数传入f函数。原因如下: - f函数的参数类型是const A**,即指向指针的const指针,表示指向指针的指针是const的,也就是说指针所指向的对象不能被修改。而p的类型是A**,即指向指针的指针,不符合参数类型要求。 - g函数的参数类型是const A* const*,即指向const指针的const指针,表示指向指针的指针和指针所指向的对象都是const的,也就是说指针所指向的对象不能被修改,指针本身也不能被修改。p的类型是A**,可以通过隐式转换为const A* const*类型,符合参数类型要求。 - k函数的参数类型是const A* &,即指向const指针的引用,表示指向的指针是const的,也就是说指针所指向的对象不能被修改。ca的类型是const A*,可以通过隐式转换为const A* &类型,符合参数类型要求。
相关问题

class A{}; void g(const A* const *P){};

### 回答1: 这是一个定义了一个名为 A 的类,以及一个名为 g 的函数,函数 g 的参数为 A 类型的指针的常量指针的常量指针,即 `const A* const *P`。 解释一下函数参数的含义: - `const A*`: 这是一个指向 A 类型对象的指针,const 表示指针指向的对象不能被修改。 - `const *P`: 这是一个指向指针的指针,也就是说,P 是一个指向指针的指针。const 表示指针 P 不能被修改,即不能改变指针 P 的指向。 - `const A* const *P`: 这是一个指向指针的指针,指针指向的对象是 A 类型的常量对象,且指针本身也是常量指针,即指针和指针指向的对象都不能被修改。 因此,函数 g 的参数可以看作是一个指向常量指针数组的指针,即数组中每个元素都是指向常量 A 对象的指针。 ### 回答2: 这段代码定义了一个名为A的类和一个名为g的函数。A类是一个空类,没有任何成员变量或成员函数。g函数的参数是一个常量指向常量指针的指针P,它指向一个A类型的对象。函数体为空,表示没有任何具体的操作。 函数g的参数类型const A* const *P解释如下: - const A*:常量指针,指向一个A类型的对象,表示通过指针P无法修改所指对象的值。 - const *P:常量指针的指针,表示P本身的值无法修改,即无法指向其他地址。 这样定义的目的是为了在函数g中使用P指针来操作A类型的对象,同时确保无法修改这个对象的值。 由于函数体为空,无法确定g函数的具体功能和用途。函数的实际意义需要根据具体的需求来分析和理解。 ### 回答3: 声明了一个名为A的类,它是一个空的类。在C++中,类是一个用户自定义的数据类型,它可以包含数据成员和成员函数。 另外,还有一个名为g的函数,它的参数是一个指向指向常量A类型对象的指针的指针。函数声明中的const关键字表示指针指向的对象是常量,即不可修改的对象。 函数g的目的是接受一个指针的指针,并对指向的对象进行操作。由于指针指向的对象是常量,函数g只能使用常量成员函数或者只读操作来访问这个对象。 需要注意的是,指向指针的指针是一种比较复杂的用法,它常用于需要在函数内部修改指针本身的情况,通过传递指向指针的指针可以改变指针指向的地址或者指向的对象。在这个例子中,函数g没有修改指针的指向,只是对指向的对象进行了操作。 总结起来,这段代码定义了一个空的类A,并声明了一个接受指向指向常量A类型对象的指针的指针参数的函数g。函数g可以对指向的对象进行操作,但不能修改指向的对象。

extern _ARMABI const void *memchr(const void * /*s*/, int /*c*/, size_t /*n*/) __attribute__((__nonnull__(1)));

这段引用看起来是关于C++代码的一部分,它可能是在描述某个函数的参数和返回类型。具体来说,这个函数是`memchr`,它是一个C库函数,用于在给定的内存块中搜索指定字符的第一次出现的位置。根据引用中的描述,函数的参数包括一个指向要搜索的内存块的指针,一个待搜索的字符,以及要搜索的字节数。函数的返回类型是一个指向匹配字符的指针,如果找不到匹配字符,则返回空指针。 根据引用中的内容,这是一个关于`memchr`函数的C++代码的声明和定义的片段,其中包括了对输入参数的解释和对函数返回值的处理。具体来说,这个代码片段定义了一个名为`memchr`的函数,函数的参数类型和顺序与引用中的描述一致。此外,还包括了一个`__attribute__((__nonnull__(1)))`的修饰符,该修饰符表示第一个参数是非空指针。 总的来说,这个引用描述了一个C++代码片段,其中定义了一个名为`memchr`的函数,该函数用于在给定的内存块中搜索指定字符的第一次出现的位置,并返回匹配字符的指针。修饰符`__attribute__((__nonnull__(1)))`表示第一个参数是非空指针。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [Error处理:Invalid arguments ' Candidates are: void * memcpy(void *, const void *, ?) Error处理:...](https://blog.csdn.net/maochongsandai110/article/details/35551341)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [Error处置:Invalid arguments ' Candidates are: void * memcpy(void * const void * ?)](https://blog.csdn.net/xuewen720/article/details/52605046)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

相关推荐

#include #include #include // 各种gpio的数据结构及函数 #include #include //__init __exit 宏定义声明 #include //class devise声明 #include //copy_from_user 的头文件 #include //设备号 dev_t 类型声明 #include MODULE_LICENSE("Dual BSD/GPL"); #define IOCTL_GPIO_OFF 0 /*灭*/ #define IOCTL_GPIO_ON 1 /*亮*/ #define DEVICE_NAME "beepctrl_caiyuxin" static struct class *ioctrl_class; #define BEEP_MAJOR 0 /*预设的主设备号*/ static int BEEP_major = BEEP_MAJOR; /*BEEP设备结构体*/ struct BEEP_dev { struct cdev cdev; /*cdev结构体*/ }; struct BEEP_dev *BEEP_devp; /*设备结构体指针*/ // 定义三色BEEP的GPIO引脚 static const struct gpio beeps[] = { // { 2, GPIOF_OUT_INIT_HIGH, "BEEP_RED" }, // { 3, GPIOF_OUT_INIT_HIGH, "BEEP_GREEN" }, { 25, GPIOF_OUT_INIT_HIGH, "BEEP" }, }; int BEEP_open(struct inode *inode, struct file *filp)//打开设备节点 { // int i; // printk(KERN_INFO " beeps opened\n"); // for(i=0;i<3;i++) // { // gpio_set_value(beeps[i].gpio, 0); // } return 0; } static long int BEEP_ioctl(struct file *filp,unsigned int cmd, unsigned long arg) { //ioctl函数接口 if (arg > sizeof(beeps)/sizeof(unsigned long)) { return -EINVAL; } printk("arg,cmd: %ld %d\n", arg, cmd); switch(cmd) { case IOCTL_GPIO_OFF:// 设置指定引脚的输出电平为0,由电路图可知,输出0时为灭 gpio_set_value(beeps[arg].gpio, 0); break; case IOCTL_GPIO_ON: gpio_set_value(beeps[arg].gpio, 1); break; default: return -EINVAL; } return 0; } int BEEP_release(struct inode *inode, struct file *filp)//释放设备节点 { int i; printk(KERN_INFO "BEEPs driver successfully close\n"); for(i=0;i<3;i++) { gpio_set_value(beeps[i].gpio, 0); } return 0; } static const struct file_operations BEEP_fops = { .owner = THIS_MODULE, .open = BEEP_open, .release = BEEP_release, .unlocked_ioctl = BEEP_ioctl, /* 实现主要控制功能*/ }; /*初始化并注册cdev*/ static void BEEP_setup

给下列程序添加英文注释:namespace nav_core { /** * @class BaseGlobalPlanner * @brief Provides an interface for global planners used in navigation. All global planners written as plugins for the navigation stack must adhere to this interface. / class BaseGlobalPlanner{ public: /* * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @return True if a valid plan was found, false otherwise / virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan) = 0; /* * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @param cost The plans calculated cost * @return True if a valid plan was found, false otherwise / virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan, double& cost) { cost = 0; return makePlan(start, goal, plan); } /* * @brief Initialization function for the BaseGlobalPlanner * @param name The name of this planner * @param costmap_ros A pointer to the ROS wrapper of the costmap to use for planning / virtual void initialize(std::string name, costmap_2d::Costmap2DROS costmap_ros) = 0; /** * @brief Virtual destructor for the interface */ virtual ~BaseGlobalPlanner(){} protected: BaseGlobalPlanner(){} }; }; // namespace nav_core #endif // NAV_CORE_BASE_GLOBAL_PLANNER_H

给下列程序添加注释namespace nav_core { /** * @class BaseGlobalPlanner * @brief Provides an interface for global planners used in navigation. All global planners written as plugins for the navigation stack must adhere to this interface. */ class BaseGlobalPlanner{ public: /** * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @return True if a valid plan was found, false otherwise */ virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan) = 0; /** * @brief Given a goal pose in the world, compute a plan * @param start The start pose * @param goal The goal pose * @param plan The plan... filled by the planner * @param cost The plans calculated cost * @return True if a valid plan was found, false otherwise */ virtual bool makePlan(const geometry_msgs::PoseStamped& start, const geometry_msgs::PoseStamped& goal, std::vector<geometry_msgs::PoseStamped>& plan, double& cost) { cost = 0; return makePlan(start, goal, plan); } /** * @brief Initialization function for the BaseGlobalPlanner * @param name The name of this planner * @param costmap_ros A pointer to the ROS wrapper of the costmap to use for planning */ virtual void initialize(std::string name, costmap_2d::Costmap2DROS* costmap_ros) = 0; /** * @brief Virtual destructor for the interface */ virtual ~BaseGlobalPlanner(){} protected: BaseGlobalPlanner(){} }; }; // namespace nav_core #endif // NAV_CORE_BASE_GLOBAL_PLANNER_H

/home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/v1/object.hpp:664:34: error: ‘void* memcpy(void*, const void*, size_t)’ copying an object of non-trivial type ‘struct msgpack::v2::object’ from an array of ‘const msgpack_object’ {aka ‘const struct msgpack_object’} [-Werror=class-memaccess] std::memcpy(&o, &v, sizeof(v)); ^ In file included from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/object_fwd.hpp:17, from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/v1/adaptor/adaptor_base_decl.hpp:14, from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/adaptor/adaptor_base_decl.hpp:13, from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/adaptor/adaptor_base.hpp:13, from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/v1/object_decl.hpp:16, from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/object_decl.hpp:14, from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/object.hpp:13, from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack.hpp:10, from /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/example/cpp03/stream.cpp:10: /home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master/include/msgpack/v2/object_fwd.hpp:23:8: note: ‘struct msgpack::v2::object’ declared here struct object : v1::object { ^~~~~~ cc1plus: all warnings being treated as errors make[2]: *** [example/cpp03/CMakeFiles/stream.dir/build.make:63:example/cpp03/CMakeFiles/stream.dir/stream.cpp.o] 错误 1 make[2]: 离开目录“/home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master” make[1]: *** [CMakeFiles/Makefile2:415:example/cpp03/CMakeFiles/stream.dir/all] 错误 2 make[1]: 离开目录“/home/AQTJClient/AQTJAuditClient/depends/msgpack-c-master”

最新推荐

recommend-type

工艺计算MBBR.xls

污水处理计算书
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

去除字符串s="ab23cde"中的数字,构成一个新的字符串"abcde"。

可以使用正则表达式来匹配并替换字符串中的数字: ```python import re s = "ab23cde" new_s = re.sub(r'\d+', '', s) print(new_s) # 输出:abcde ``` 其中,`\d` 表示匹配数字,`+` 表示匹配一个或多个数字,`re.sub()` 函数用来替换匹配到的数字为空字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我用python随便写一个demo

以下是一个简单的Python demo: ``` python # 这是一个简单的Python demo # 用于计算两个数的加、减、乘、除 # 定义两个数 num1 = 10 num2 = 5 # 加法 result_add = num1 + num2 print("加法结果为:", result_add) # 减法 result_sub = num1 - num2 print("减法结果为:", result_sub) # 乘法 result_mul = num1 * num2 print("乘法结果为:", result_mul) # 除法 result_div = num1
recommend-type

建筑供配电系统相关课件.pptx

建筑供配电系统是建筑中的重要组成部分,负责为建筑内的设备和设施提供电力支持。在建筑供配电系统相关课件中介绍了建筑供配电系统的基本知识,其中提到了电路的基本概念。电路是电流流经的路径,由电源、负载、开关、保护装置和导线等组成。在电路中,涉及到电流、电压、电功率和电阻等基本物理量。电流是单位时间内电路中产生或消耗的电能,而电功率则是电流在单位时间内的功率。另外,电路的工作状态包括开路状态、短路状态和额定工作状态,各种电气设备都有其额定值,在满足这些额定条件下,电路处于正常工作状态。而交流电则是实际电力网中使用的电力形式,按照正弦规律变化,即使在需要直流电的行业也多是通过交流电整流获得。 建筑供配电系统的设计和运行是建筑工程中一个至关重要的环节,其正确性和稳定性直接关系到建筑物内部设备的正常运行和电力安全。通过了解建筑供配电系统的基本知识,可以更好地理解和应用这些原理,从而提高建筑电力系统的效率和可靠性。在课件中介绍了电工基本知识,包括电路的基本概念、电路的基本物理量和电路的工作状态。这些知识不仅对电气工程师和建筑设计师有用,也对一般人了解电力系统和用电有所帮助。 值得一提的是,建筑供配电系统在建筑工程中的重要性不仅仅是提供电力支持,更是为了确保建筑物的安全性。在建筑供配电系统设计中必须考虑到保护装置的设置,以确保电路在发生故障时及时切断电源,避免潜在危险。此外,在电气设备的选型和布置时也需要根据建筑的特点和需求进行合理规划,以提高电力系统的稳定性和安全性。 在实际应用中,建筑供配电系统的设计和建设需要考虑多个方面的因素,如建筑物的类型、规模、用途、电力需求、安全标准等。通过合理的设计和施工,可以确保建筑供配电系统的正常运行和安全性。同时,在建筑供配电系统的维护和管理方面也需要重视,定期检查和维护电气设备,及时发现和解决问题,以确保建筑物内部设备的正常使用。 总的来说,建筑供配电系统是建筑工程中不可或缺的一部分,其重要性不言而喻。通过学习建筑供配电系统的相关知识,可以更好地理解和应用这些原理,提高建筑电力系统的效率和可靠性,确保建筑物内部设备的正常运行和电力安全。建筑供配电系统的设计、建设、维护和管理都需要严谨细致,只有这样才能确保建筑物的电力系统稳定、安全、高效地运行。