n个人排成一圈,按顺时针方向依次编号1,2,3…n。从编号为1的人开始顺时针"一二"报数,报到2的人退出圈子。这样不断循环下去,圈子里的人将不断减少。最终一定会剩下一个人。试问最后剩下的人的编号。

时间: 2024-03-04 12:19:55 浏览: 16
这个问题可以使用约瑟夫问题的思路来解决。设最后剩下的人的编号为 f(n,m),表示有 n 个人时,按照题目的规则报数到 m 的人最后剩下的编号。 当 n=1 时,剩下的人的编号为1,即 f(1,m)=1。 当 n>1 时,第一轮报数后,编号为 m 的人出圈,剩下了 n-1 个人,假设剩下的人继续从编号为 m+1 开始报数,那么他们的编号会变成 1,2,...,n-m。因此,剩下的人最后的编号就是 f(n-1,m)。但是,这个编号是相对于剩下的 n-1 个人来说的,如果把它转化为相对于原来的 n 个人的编号,就需要加上 m,即 f(n,m)=f(n-1,m)+m。但是,由于每次报数后都是从下一个人开始报数,因此,编号也要相应地向前移动 m 个位置,即 f(n,m)=(f(n-1,m)+m)%n,其中 "%" 表示取模运算。 按照上述递推公式,可以求出最后剩下的人的编号。
相关问题

n个人排成一圈,按顺时针方向依次编号1.2.3…n。从编号为1的人开始顺时针一二报数,报到2的人退出圈子。这样不断循环下去,圈子里的人不断减少,最终一定会剩下一个人。试问最后剩下的人的编号

根据约瑟夫环问题的解法,可以用数组模拟这个过程。我们可以定义一个长度为n的数组,每个元素表示对应编号的人是否在圈子里,初始化为1表示都在圈子里。然后用一个循环模拟每次报数和出圈的过程,直到只剩下一个人。最后输出剩下的人的编号即可。 以下是C语言的代码实现: ``` #include <stdio.h> int main() { int n, count = 0, i = 0, j, num = 1; printf("请输入人数n:"); scanf("%d", &n); int arr[n]; for (j = 0; j < n; j++) { // 初始化数组 arr[j] = 1; } while (count < n - 1) { // 只剩一人时结束循环 if (arr[i] == 1) { // 如果这个人还在圈里 if (num == 2) { // 报数到2时出圈 arr[i] = 0; // 标记为离开圈子 count++; // 离开圈子的人数增加 num = 1; // 报数从1开始 } else { num++; // 报数加1 } } i++; // 下一个人 if (i == n) { // 如果到了最后一个人,回到第一个人 i = 0; } } for (i = 0; i < n; i++) { // 输出剩下的人 if (arr[i] == 1) { printf("剩下的人的编号是%d\n", i + 1); break; } } return 0; } ``` 这段代码实现了约瑟夫环问题的解法,根据输入的人数n,按照报数规则,每次淘汰报数为2的人,直到只剩下一人。最后输出剩下的人的编号。

n个人排成一圈,按顺时针方向依次编号1,2,3…n。从编号为1的人开始顺时针一二报数,报到2的人退出圈子。这样不断循环下去,圈子里的人将不断减少。最终一定会剩下一个人。试问最后剩下的人的编号。 要求程序模

以下是使用链表模拟循环链表的解法,时间复杂度为O(nm): ```c #include <stdio.h> #include <stdlib.h> typedef struct node { int num; // 编号 struct node *next; // 下一个节点 } Node; int main() { int n; // n个人 int m = 2; // 报数到m的人出圈 scanf("%d", &n); Node *head = (Node*)malloc(sizeof(Node)); // 创建循环链表 head->num = 1; Node *p = head; for (int i = 2; i <= n; i++) { Node *new_node = (Node*)malloc(sizeof(Node)); new_node->num = i; p->next = new_node; p = new_node; } p->next = head; // 链表首尾相连 p = head; while (p->next != p) { // 只要还有超过1个人在圈子里就继续报数 for (int i = 1; i < m; i++) { // 报数到m的人出圈 p = p->next; } Node *q = p->next; p->next = q->next; printf("%d ", q->num); // 输出出圈的人的编号 free(q); // 释放出圈的人的内存空间 } printf("%d", p->num); // 剩下最后一个人的编号 free(p); // 释放最后一个人的内存空间 return 0; } ``` 上述代码中,我们使用一个循环链表来模拟圆桌上的人。首先创建一个包含n个节点的循环链表,每个节点代表一个人,从编号1开始顺时针排列。然后按照题目要求进行报数和出圈,直到圆桌上只剩下一个人。最后输出这个人的编号,并释放所有节点的内存空间。

相关推荐

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

罗兰贝格:德隆人力资源管理体系gltp.pptx

罗兰贝格:德隆人力资源管理体系gltp.pptx
recommend-type

JAVA3D的网络三维技术的设计与实现.zip

JAVA3D的网络三维技术的设计与实现
recommend-type

setuptools-11.3.1.tar.gz

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于J2EE的B2C电子商务系统开发.zip

基于J2EE的B2C电子商务系统开发
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。