代码为param_grid = {"svm_c": [0.001, 0.01, 0.1, 1, 10, 100], "svm_gamma": [0.001, 0.01, 0.1, 1, 10, 100]} grid = GridSearchCV(pipe, param_grid=param_grid, cv=10) grid.fit(x_train,y_train),报错为ValueError: Invalid parameter 'svm_c' for estimator Pipeline(steps=[('scaler', MinMaxScaler()), ('svm', SVC())]). Valid parameters are: ['memory', 'steps', 'verbose'].

时间: 2024-01-13 12:04:26 浏览: 36
这个错误一般是由于管道对象pipe中包含的SVC模型没有定义超参数svm_c导致的。请确保在定义pipe时,SVC模型的超参数包括svm_c,例如: ```python from sklearn.pipeline import Pipeline from sklearn.svm import SVC from sklearn.preprocessing import MinMaxScaler pipe = Pipeline([ ('scaler', MinMaxScaler()), ('svm', SVC(kernel='rbf')) ]) param_grid = {'svm__C': [0.001, 0.01, 0.1, 1, 10, 100], 'svm__gamma': [0.001, 0.01, 0.1, 1, 10, 100]} grid = GridSearchCV(pipe, param_grid=param_grid, cv=10) grid.fit(x_train, y_train) ``` 这里将超参数svm_c改为svm__C,超参数svm_gamma改为svm__gamma,使用双下划线指定SVC模型中的超参数。这样就可以保证GridSearchCV函数可以正确识别SVC模型的超参数了。
相关问题

param_grid = {"svm_c": [0.001, 0.01, 0.1, 1, 10, 100], "svm_gamma": [0.001, 0.01, 0.1, 1, 10, 100]} grid = GridSearchCV(pipe, param_grid=param_grid, cv=10)

这段代码使用了scikit-learn中的GridSearchCV函数进行网格搜索,通过传入一个管道对象pipe和参数字典param_grid,对管道中的SVM模型的超参数C和gamma进行交叉验证调参。其中,param_grid指定了超参数的取值范围,cv参数指定了10折交叉验证。最终,GridSearchCV函数会返回一个拟合好的模型对象,可以用于进行预测。

param_grid = { 'C': [0.1, 1, 10], 'gamma': [0.01, 0.1, 1] }

这个param_grid是一个字典,包含了两个超参数:C和gamma。每个超参数都对应一个列表,分别包含了不同的参数值。在这个例子中,C和gamma分别包含了3个不同的值,共9个参数组合。 这个param_grid用于支持向量机分类器的超参数调优,具体代码如下: ```python from sklearn.model_selection import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split # 导入数据集 iris = load_iris() X = iris.data y = iris.target # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建svm分类器 svm_clf = SVC() # 设置参数组合 param_grid = { 'C': [0.1, 1, 10], 'gamma': [0.01, 0.1, 1] } # 使用GridSearchCV进行超参数调优 grid_search = GridSearchCV(svm_clf, param_grid, cv=5) grid_search.fit(X_train, y_train) # 输出最优参数及分数 print("最优参数:", grid_search.best_params_) print("最优分数:", grid_search.best_score_) ``` 在这个例子中,我们搜索了不同的惩罚参数C和核函数参数gamma的组合。GridSearchCV会自动地搜索所有组合,并返回最优的参数组合及其对应的分数。 你可以根据自己的需求修改参数组合,进行不同模型的超参数调优。

相关推荐

优化这段代码 for j in n_components: estimator = PCA(n_components=j,random_state=42) pca_X_train = estimator.fit_transform(X_standard) pca_X_test = estimator.transform(X_standard_test) cvx = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) cost = [-5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15] gam = [3, 1, -1, -3, -5, -7, -9, -11, -13, -15] parameters =[{'kernel': ['rbf'], 'C': [2x for x in cost],'gamma':[2x for x in gam]}] svc_grid_search=GridSearchCV(estimator=SVC(random_state=42), param_grid=parameters,cv=cvx,scoring=scoring,verbose=0) svc_grid_search.fit(pca_X_train, train_y) param_grid = {'penalty':['l1', 'l2'], "C":[0.00001,0.0001,0.001, 0.01, 0.1, 1, 10, 100, 1000], "solver":["newton-cg", "lbfgs","liblinear","sag","saga"] # "algorithm":['auto', 'ball_tree', 'kd_tree', 'brute'] } LR_grid = LogisticRegression(max_iter=1000, random_state=42) LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid, cv=cvx ,scoring=scoring,n_jobs=10,verbose=0) LR_grid_search.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] clf = StackingClassifier(estimators=estimators, final_estimator=LinearSVC(C=5, random_state=42),n_jobs=10,verbose=0) clf.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] param_grid = {'final_estimator':[LogisticRegression(C=0.00001),LogisticRegression(C=0.0001), LogisticRegression(C=0.001),LogisticRegression(C=0.01), LogisticRegression(C=0.1),LogisticRegression(C=1), LogisticRegression(C=10),LogisticRegression(C=100), LogisticRegression(C=1000)]} Stacking_grid =StackingClassifier(estimators=estimators,) Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid, cv=cvx, scoring=scoring,n_jobs=10,verbose=0) Stacking_grid_search.fit(pca_X_train, train_y) var = Stacking_grid_search.best_estimator_ train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, pca_X_train,train_y, cv=cvx) train_res1=get_measures_gridloo(train_y,train_pre_y) test_pre_y = Stacking_grid_search.predict(pca_X_test) test_res1=get_measures_gridloo(test_y,test_pre_y) best_pca_train_aucs.append(train_res1.loc[:,"AUC"]) best_pca_test_aucs.append(test_res1.loc[:,"AUC"]) best_pca_train_scores.append(train_res1) best_pca_test_scores.append(test_res1) train_aucs.append(np.max(best_pca_train_aucs)) test_aucs.append(best_pca_test_aucs[np.argmax(best_pca_train_aucs)].item()) train_scores.append(best_pca_train_scores[np.argmax(best_pca_train_aucs)]) test_scores.append(best_pca_test_scores[np.argmax(best_pca_train_aucs)]) pca_comp.append(n_components[np.argmax(best_pca_train_aucs)]) print("n_components:") print(n_components[np.argmax(best_pca_train_aucs)])

def svmModel(x_train,x_test,y_train,y_test,type): if type=='rbf': svmmodel=svm.SVC(C=15,kernel='rbf',gamma=10,decision_function_shape='ovr') else: svmmodel=svm.SVC(C=0.1,kernel='linear',decision_function_shape='ovr') svmmodel.fit(x_train,y_train.ravel()) print('SVM模型:',svmmodel) train_accscore=svmmodel.score(x_train,y_train) test_accscore=svmmodel.score(x_test,y_test) n_support_numbers=svmmodel.n_support_ return svmmodel,train_accscore,test_accscore,n_support_numbers if __name__=='__main__': iris_feature='花萼长度','花萼宽度','花瓣长度','花瓣宽度' path="D:\data\iris(1).data" data=pd.read_csv(path,header=None) x,y=data[[0,1]],pd.Categorical(data[4]).codes x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=3,train_size=0.6) type='linear' svmmodel,train_accscore,test_accscore,n_support_numbers=svmModel(x_train,x_test,y_train,y_test,type) print('训练集准确率:',train_accscore) print('测试机准确率:',test_accscore) print('支持向量的数目:',n_support_numbers) print('-' * 50) if __name__=='__main__': path='D:/data/iris1-100.data' data=pd.read_csv(path,header=None) x=data[list(range(2,4))] y=data[4].replace(['Iris-versicolor','Iris-virginica'],[0,1]) svmmodel_param=(('linear',0.1),('rbf',1,0.1),('rbf',5,5),('rbf',10,10)) for i, param in enumerate(svmmodel_param): svmmodel,title,accuracyscore=svmModel(x,y,param) y_predict=svmmodel.predict(x) print(title) print('准确率:',accuracyscore) print('支持向量的数目:',svmmodel.n_support_)

最新推荐

recommend-type

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a

pre_o_1csdn63m9a1bs0e1rr51niuu33e.a
recommend-type

matlab建立计算力学课程的笔记和文件.zip

matlab建立计算力学课程的笔记和文件.zip
recommend-type

FT-Prog-v3.12.38.643-FTD USB 工作模式设定及eprom读写

FT_Prog_v3.12.38.643--FTD USB 工作模式设定及eprom读写
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这