代码为param_grid = {"svm_c": [0.001, 0.01, 0.1, 1, 10, 100], "svm_gamma": [0.001, 0.01, 0.1, 1, 10, 100]} grid = GridSearchCV(pipe, param_grid=param_grid, cv=10) grid.fit(x_train,y_train),报错为ValueError: Invalid parameter 'svm_c' for estimator Pipeline(steps=[('scaler', MinMaxScaler()), ('svm', SVC())]). Valid parameters are: ['memory', 'steps', 'verbose'].
时间: 2024-01-13 08:04:26 浏览: 140
基于GridSearch的svm参数寻优1
这个错误一般是由于管道对象pipe中包含的SVC模型没有定义超参数svm_c导致的。请确保在定义pipe时,SVC模型的超参数包括svm_c,例如:
```python
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.preprocessing import MinMaxScaler
pipe = Pipeline([
('scaler', MinMaxScaler()),
('svm', SVC(kernel='rbf'))
])
param_grid = {'svm__C': [0.001, 0.01, 0.1, 1, 10, 100], 'svm__gamma': [0.001, 0.01, 0.1, 1, 10, 100]}
grid = GridSearchCV(pipe, param_grid=param_grid, cv=10)
grid.fit(x_train, y_train)
```
这里将超参数svm_c改为svm__C,超参数svm_gamma改为svm__gamma,使用双下划线指定SVC模型中的超参数。这样就可以保证GridSearchCV函数可以正确识别SVC模型的超参数了。
阅读全文