CNN中的train_crossEntropy是什么意思

时间: 2024-05-31 20:10:13 浏览: 12
"train_crossEntropy" 是指在使用卷积神经网络 (CNN) 进行训练时所采用的损失函数,通常也被称为交叉熵 (Cross-Entropy) 损失函数。该函数是一种用于衡量模型预测结果与真实结果之间差距的方法,可以帮助优化算法调整模型参数,使得预测结果更加准确。在 CNN 中,交叉熵损失函数通常用于分类任务,比如图像分类、文本分类等。其具体计算方法可以参考以下公式: $H(p, q) = -\sum_{x} p(x) \log q(x)$ 其中,$p$ 是真实标签的概率分布,$q$ 是模型预测的概率分布,$x$ 是类别的编号。交叉熵损失函数越小,表示模型预测结果与真实结果之间的差距越小,模型越准确。
相关问题

import numpy as np from tensorflow import keras # 加载手写数字图像和标签 def load_data(): train_data = np.loadtxt('train_images.csv', delimiter=',') train_labels = np.loadtxt('train_labels.csv', delimiter=',') test_data = np.loadtxt('test_image.csv', delimiter=',') return train_data, train_labels, test_data # 数据预处理 def preprocess_data(train_data, test_data): # 归一化到 [0, 1] 范围 train_data = train_data / 255.0 test_data = test_data / 255.0 # 将数据 reshape 成适合 CNN 的输入形状 (样本数, 高度, 宽度, 通道数) train_data = train_data.reshape(-1, 28, 28, 1) test_data = test_data.reshape(-1, 28, 28, 1) return train_data, test_data # 构建 CNN 模型 def build_model(): model = keras.Sequential([ keras.layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)), keras.layers.MaxPooling2D(pool_size=(2, 2)), keras.layers.Flatten(), keras.layers.Dense(units=128, activation='relu'), keras.layers.Dense(units=10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model # 进行数字识别 def recognize_digit(image, model): probabilities = model.predict(image) digit = np.argmax(probabilities) return digit # 主函数 def main(): # 加载数据 train_data, train_labels, test_data = load_data() # 数据预处理 train_data, test_data = preprocess_data(train_data, test_data) # 构建并训练模型 model = build_model() model.fit(train_data, train_labels, epochs=10, batch_size=32) # 进行数字识别 recognized_digit = recognize_digit(test_data, model) print("识别结果:", recognized_digit) if __name__ == '__main__': main()

这段代码是用于构建一个卷积神经网络(CNN)模型来进行手写数字识别。代码的流程如下: 1. 导入必要的库:numpy和tensorflow的keras模块。 2. 定义一个函数load_data(),用于加载手写数字图像和标签数据。 3. 定义一个函数preprocess_data(),用于对数据进行预处理,包括归一化和reshape操作。 4. 定义一个函数build_model(),用于构建CNN模型。 5. 定义一个函数recognize_digit(),用于进行数字识别。 6. 定义主函数main(),在其中完成数据加载、预处理、模型构建、训练和数字识别的整个流程。 7. 最后,在主函数中调用各个函数,完成手写数字识别的任务。 请注意,这段代码中使用了一些特定的数据文件(train_images.csv、train_labels.csv和test_image.csv),你需要根据实际情况提供相应的数据文件。另外,该代码假设输入的手写数字图像是28x28像素的灰度图像。

Traceback (most recent call last): File "C:\Users\Lenovo\Desktop\DZY\DZY\CNN_mnist_yuanshi.py", line 177, in <module> train_loop(train_dataloader, model, loss_fn, optimizer, t, schedular) File "C:\Users\Lenovo\Desktop\DZY\DZY\CNN_mnist_yuanshi.py", line 114, in train_loop loss = loss_fn(outputs, y) File "D:\Program Files (x86)\py38\lib\site-packages\torch\nn\modules\module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "D:\Program Files (x86)\py38\lib\site-packages\torch\nn\modules\loss.py", line 1174, in forward return F.cross_entropy(input, target, weight=self.weight, File "D:\Program Files (x86)\py38\lib\site-packages\torch\nn\functional.py", line 3029, in cross_entropy return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing) TypeError: cross_entropy_loss(): argument 'target' (position 2) must be Tensor, not tuple Process finished with exit code 1

这个错误是由于在调用`F.cross_entropy`函数时,传入的`target`参数是一个元组而不是一个张量。`F.cross_entropy`函数的`target`参数应该是一个包含目标类别的张量,而不是一个元组。 请检查你的代码,确保在调用`F.cross_entropy`函数时,传入的`target`参数是一个张量。如果`target`是一个元组,你可以使用`torch.Tensor`或`torch.tensor`将其转换为张量。 例如,如果`target`是一个长度为`n`的元组,你可以使用以下代码将其转换为张量: ```python target = torch.tensor(target) ``` 然后,将转换后的`target`张量传递给`F.cross_entropy`函数。这样应该可以解决这个错误。

相关推荐

def train(model, train_loader, criterion, optimizer): model.train() train_loss = 0.0 train_acc = 0.0 for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) loss.backward() optimizer.step() train_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) train_acc += torch.sum(preds == labels.data) train_loss = train_loss / len(train_loader.dataset) train_acc = train_acc.double() / len(train_loader.dataset) return train_loss, train_acc def test(model, verify_loader, criterion): model.eval() test_loss = 0.0 test_acc = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(test_loader): outputs = model(inputs.unsqueeze(1).float()) loss = criterion(outputs, labels.long()) test_loss += loss.item() * inputs.size(0) _, preds = torch.max(outputs, 1) test_acc += torch.sum(preds == labels.data) test_loss = test_loss / len(test_loader.dataset) test_acc = test_acc.double() / len(test_loader.dataset) return test_loss, test_acc # Instantiate the model model = CNN() # Define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) # Instantiate the data loaders train_dataset = MyDataset1('1MATRICE') train_loader = DataLoader(train_dataset, batch_size=5, shuffle=True) test_dataset = MyDataset2('2MATRICE') test_loader = DataLoader(test_dataset, batch_size=5, shuffle=False) train_losses, train_accs, test_losses, test_accs = [], [], [], [] for epoch in range(500): train_loss, train_acc = train(model, train_loader, criterion, optimizer) test_loss, test_acc = test(model, test_loader, criterion) train_losses.append(train_loss) train_accs.append(train_acc) test_losses.append(test_loss) test_accs.append(test_acc) print('Epoch: {} Train Loss: {:.4f} Train Acc: {:.4f} Test Loss: {:.4f} Test Acc: {:.4f}'.format( epoch, train_loss, train_acc, test_loss, test_acc))

def define_cnn_model(): # 使用Sequential序列模型 model = Sequential() # 卷积层 model.add(Conv2D(32,(3,3),activation="relu",padding="same",input_shape=(200,200,3))) # 第一层即为卷积层,要设置输入进来图片的样式 3是颜色通道个数 # 最大池化层 model.add(MaxPool2D((2,2))) # 池化窗格 model.add(Conv2D(64,(3,3),activation="relu",padding="same",input_shape=(200,200,3))) # 第一层即为卷积层,要设置输入进来图片的样式 3是颜色通道个数 # 最大池化层 model.add(MaxPool2D((2,2))) # 池化窗格 model.add(Conv2D(128,(3,3),activation="relu",padding="same",input_shape=(200,200,3))) # 第一层即为卷积层,要设置输入进来图片的样式 3是颜色通道个数 # 最大池化层 model.add(MaxPool2D((2,2))) # 池化窗格 model.add(Flatten()) # Flatten层 # 全连接层 model.add(Dense(128,activation="relu")) # 128为神经元的个数 model.add(Dense(1,activation="sigmoid")) # 编译模型 opt = SGD(lr= 0.001,momentum=0.9) # 随机梯度 model.compile(optimizer=opt,loss="binary_crossentropy",metrics=["accuracy"]) return model def train_cnn_model(): # 实例化模型 model = define_cnn_model() # 创建图片生成器 datagen = ImageDataGenerator(rescale=1.0/255.0) train_it = datagen.flow_from_directory( r"../Test1/Train", class_mode="binary", batch_size=64, target_size=(200, 200)) # batch_size:一次拿出多少张照片 targe_size:将图片缩放到一定比例 # 训练模型 model.fit(train_it, steps_per_epoch=len(train_it), epochs=20, verbose=1) model.save("my_model.h5") torch.cuda.set_device(0) train_cnn_model() 将上述代码的训练过程绘图

import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Conv1D, MaxPooling1D, Flatten from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix, classification_report from sklearn.metrics import roc_auc_score from sklearn.utils.class_weight import compute_class_weight # 读取数据 data = pd.read_csv('database.csv') # 数据预处理 X = data.iloc[:, :-1].values y = data.iloc[:, -1].values scaler = StandardScaler() X = scaler.fit_transform(X) # 特征选择 pca = PCA(n_components=10) X = pca.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) class_weights = compute_class_weight(class_weight='balanced', classes=np.unique(y_train), y=y_train) # 构建CNN模型 model = Sequential() model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(10, 1))) model.add(MaxPooling1D(pool_size=2)) model.add(Flatten()) model.add(Dense(10, activation='relu')) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 训练模型 X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1)) X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1)) model.fit(X_train, y_train,class_weight=class_weights,epochs=100, batch_size=64, validation_data=(X_test, y_test)) # 预测结果 y_pred = model.predict(X_test) #检验值 accuracy = accuracy_score(y_test, y_pred) auc = roc_auc_score(y_test, y_pred) print(auc) print("Accuracy:", accuracy) print('Confusion Matrix:\n', confusion_matrix(y_test, y_pred)) print('Classification Report:\n', classification_report(y_test, y_pred))

最新推荐

recommend-type

详解tensorflow训练自己的数据集实现CNN图像分类

cross_entropy = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy) # (7) 训练和评估模型...
recommend-type

同邦软件.txt

同邦软件
recommend-type

【精美排版】单片机电子秒表设计Proteus.docx

单片机
recommend-type

文艺高逼格21.pptx

文艺风格ppt模板文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板 文艺风格ppt模板
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依