void Extract1DEdge::GetProfieMat() { if (m_mInputMat.empty()) { return; } if (m_mInputMat.channels() > 1) { cvtColor(m_mInputMat, m_mInputMat, COLOR_BGR2GRAY); } Mat RotateMat = getRotationMatrix2D(m_pdCenter, -m_dAngle, 1); warpAffine(m_mInputMat, m_mInputMat, RotateMat, m_mInputMat.size(), WARP_INVERSE_MAP); Mat newCenter = RotateMat * (Mat_<double>(3, 1) << m_pdCenter.x, m_pdCenter.y, 1); double x = newCenter.at<double>(0, 0); double y = newCenter.at<double>(1, 0); Mat M = (Mat_<double>(2, 3) << 1, 0, x - m_dLength * 0.5, 0, 1, y - m_dHeight * 0.5); warpAffine(m_mInputMat, m_mInputMat, M, Size2d(m_dLength, m_dHeight), WARP_INVERSE_MAP); }如何保持效果不变的情况下加速这段代码给个例程
时间: 2024-02-17 21:04:06 浏览: 136
可以尝试使用多线程来加速这段代码。具体可以将图像切分成多个小块,每个小块分配一个线程来处理,最后将小块合并成完整的图像。这样可以利用多核CPU的优势,提高代码的运行效率。以下是伪代码示例:
```
void Extract1DEdge::GetProfieMat() {
if (m_mInputMat.empty()) {
return;
}
if (m_mInputMat.channels() > 1) {
cvtColor(m_mInputMat, m_mInputMat, COLOR_BGR2GRAY);
}
Mat RotateMat = getRotationMatrix2D(m_pdCenter, -m_dAngle, 1);
warpAffine(m_mInputMat, m_mInputMat, RotateMat, m_mInputMat.size(), WARP_INVERSE_MAP);
Mat newCenter = RotateMat * (Mat_<double>(3, 1) << m_pdCenter.x, m_pdCenter.y, 1);
double x = newCenter.at<double>(0, 0);
double y = newCenter.at<double>(1, 0);
Mat M = (Mat_<double>(2, 3) << 1, 0, x - m_dLength * 0.5, 0, 1, y - m_dHeight * 0.5);
// 切分图像
vector<Mat> subMats;
const int numThreads = 4; // 可以根据实际情况调整线程数量
const int rowsPerThread = m_mInputMat.rows / numThreads;
for (int i = 0; i < numThreads; i++) {
int startRow = i * rowsPerThread;
int endRow = (i == numThreads - 1) ? m_mInputMat.rows : (startRow + rowsPerThread);
Mat subMat = m_mInputMat.rowRange(startRow, endRow);
subMats.push_back(subMat);
}
// 多线程处理
vector<thread> threads;
for (int i = 0; i < numThreads; i++) {
threads.push_back(thread([&, i]() {
Mat subMat = subMats[i];
warpAffine(subMat, subMat, M, Size2d(m_dLength, m_dHeight), WARP_INVERSE_MAP);
}));
}
for (auto& t : threads) {
t.join();
}
// 合并图像
for (int i = 1; i < numThreads; i++) {
Mat subMat = subMats[i];
subMat.copyTo(m_mInputMat.rowRange(i * rowsPerThread, (i == numThreads - 1) ? m_mInputMat.rows : ((i + 1) * rowsPerThread)));
}
}
```
需要注意的是,多线程处理图像时需要注意线程安全,避免多个线程同时访问同一块内存区域。在上述示例中,使用了引用捕获方式来访问外部变量。此外,也可以使用互斥锁或其他线程同步机制来保证线程安全。
阅读全文