请提供一段python代码:基于GA的遗传算法,用于优化现有的:20个one class svm单类分类器模型的20组参数
时间: 2023-06-09 21:07:13 浏览: 112
以下是基于GA的遗传算法优化20个one class SVM单类分类器模型的20组参数的python代码:
```python
import numpy as np
from sklearn.svm import OneClassSVM
from sklearn.metrics import f1_score
def f1_score_one_class_svm(x):
# 用GA中的参数x构建一个one class SVM单类分类器
classifier = OneClassSVM(kernel='rbf', gamma=x[0], nu=x[1], tol=x[2])
classifier.fit(x_train)
# 计算one class SVM分类器的F1得分
y_pred = classifier.predict(x_test)
score = f1_score(y_test, y_pred, pos_label=-1)
return score
def ga_one_class_svm(num_generations=100, population_size=10, mutation_rate=0.1):
# 随机生成一组初始参数
population = np.random.rand(population_size, 3)
best_score = 0
best_params = None
for generation in range(num_generations):
# 计算每个个体的适应度
scores = [f1_score_one_class_svm(x) for x in population]
# 找到最佳适应度
best_index = np.argmax(scores)
if scores[best_index] > best_score:
best_score = scores[best_index]
best_params = population[best_index]
# 选择最佳个体来进行交叉
parents = population[np.argsort(scores)[-2:]]
# 交叉产生新的个体
offspring = [(parents[0][0], parents[1][1], parents[0][2]), (parents[1][0], parents[0][1], parents[1][2])]
# 随机变异某些个体
for i in range(population_size):
if np.random.rand() < mutation_rate:
population[i] = np.random.rand(3)
else:
population[i] = offspring[np.random.randint(2)]
# 返回最佳参数和最佳分数
return best_params, best_score
# x_train和y_train是训练数据,x_test和y_test是测试数据
best_params_list = []
for i in range(20):
x_train, y_train = load_data('train_data_{}.npy'.format(i))
x_test, y_test = load_data('test_data_{}.npy'.format(i))
best_params, best_score = ga_one_class_svm()
print('Best parameters for model {}: gamma={}, nu={}, tol={}'.format(i, best_params[0], best_params[1], best_params[2]))
best_params_list.append(best_params)
```
注意,上述代码并不完整,实际实现中还需要自己实现`load_data()`函数和读取训练集和测试集的代码。另外,以上代码是根据one class SVM的三个参数gamma、nu和tol来进行优化的,如果需要优化其他参数或者使用其他分类器,需要进行相应的修改。
阅读全文