层次聚类分析python代码
时间: 2023-11-13 19:57:00 浏览: 120
层次聚类分析是一种常用的聚类方法,它可以将数据集中的样本分成不同的类别。下面是一个简单的层次聚类分析的Python代码实现:
```python
import numpy as np
from scipy.cluster.hierarchy import dendrogram, linkage
import matplotlib.pyplot as plt
# 生成随机数据
np.random.seed(4711)
a = np.random.multivariate_normal([10, 0], [[3, 1], [1, 4]], size=[100,])
b = np.random.multivariate_normal([0, 20], [[3, 1], [1, 4]], size=[50,])
X = np.concatenate((a, b),)
# 生成距离矩阵
Z = linkage(X, 'ward')
# 绘制树状图
plt.figure(figsize=(25, 10))
plt.title('Hierarchical Clustering Dendrogram')
plt.xlabel('sample index')
plt.ylabel('distance')
dendrogram(Z, leaf_rotation=90., leaf_font_size=8.)
plt.show()
```
这段代码首先生成了一个随机数据集,然后使用`linkage`函数生成距离矩阵,最后使用`dendrogram`函数绘制树状图。其中,`ward`表示使用Ward方差最小化算法进行聚类。
如果你想对自己的数据进行层次聚类分析,只需要将数据集替换掉上面的随机数据即可。
阅读全文