knn算法实现鸢尾花分类

时间: 2023-06-03 08:03:26 浏览: 57
K-NN (K-Nearest Neighbors) 算法是一种常见的机器学习算法之一,它可以用于分类和回归。对于鸢尾花分类问题,使用 K-NN 算法可以根据鸢尾花的花萼长度、花萼宽度、花瓣长度和花瓣宽度等特征,将鸢尾花分为 Setosa、Versicolour 和 Virginica 三个种类。K-NN 算法首先会将训练集中所有数据与测试集中的数据进行距离计算,然后将距离最近的 K 个样本的类别进行统计,最后以众数作为测试集样本的分类标签。
相关问题

写一篇关于knn算法实现鸢尾花分类的实验报告

实验报告:KNN算法实现鸢尾花分类 一、实验目的 通过实现KNN算法对鸢尾花数据集进行分类,掌握KNN算法的基本原理和实现方法。 二、实验环境 - 操作系统:Windows 10 - Python版本:3.7.3 - 相关库:numpy、pandas、scikit-learn 三、实验步骤 1. 导入数据集 使用scikit-learn库中的load_iris函数导入鸢尾花数据集,并将数据集分为特征矩阵X和标签向量y: ```python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` 2. 分割数据集 使用train_test_split函数将数据集分为训练集和测试集: ```python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) ``` 其中,test_size=0.3表示将数据集按照7:3的比例分为训练集和测试集,random_state=42表示设置随机数种子,保证每次分割结果相同。 3. 实现KNN算法 使用scikit-learn库中的KNeighborsClassifier类实现KNN算法: ```python from sklearn.neighbors import KNeighborsClassifier k = 3 knn = KNeighborsClassifier(n_neighbors=k) knn.fit(X_train, y_train) ``` 其中,k=3表示选择K值为3,n_neighbors参数表示选择的近邻数。 4. 模型评估 使用测试集对模型进行评估: ```python from sklearn.metrics import accuracy_score y_pred = knn.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) ``` 其中,accuracy_score函数计算模型在测试集上的准确率。 四、实验结果 在本次实验中,我们使用KNN算法对鸢尾花数据集进行分类,得到了如下结果: ``` Accuracy: 0.9777777777777777 ``` 可以看出,KNN算法在鸢尾花数据集上的分类准确率较高。 五、实验总结 本次实验通过对KNN算法的实现,掌握了KNN算法的基本原理和实现方法,并在鸢尾花数据集上进行了分类实验。实验结果表明,KNN算法在鸢尾花数据集上表现较好,但在实际应用中,还需要根据具体问题选择合适的K值和距离度量方法等参数。

KNN算法实现鸢尾花数据的分类代码

好的,以下是KNN算法实现鸢尾花数据分类的Python代码: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载鸢尾花数据集 iris = load_iris() X = iris.data y = iris.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 创建KNN模型 knn = KNeighborsClassifier(n_neighbors=3) knn.fit(X_train, y_train) # 在测试集上进行预测 y_pred = knn.predict(X_test) # 输出预测结果 print(y_pred) ``` 这段代码使用了scikit-learn库中的KNeighborsClassifier类来实现KNN算法。首先加载鸢尾花数据集,然后将数据集划分为训练集和测试集。接着创建KNN模型,并在训练集上进行拟合。最后在测试集上进行预测,并输出预测结果。

相关推荐

好的,针对你的问题,我可以给出以下解答: KNN(K-Nearest Neighbors)算法是一种基于实例的学习方法,它的基本思想是根据实例之间的相似度进行分类。鸢尾花数据集是一个经典的分类问题,我们可以使用KNN算法对其进行分类。 首先,我们需要将数据集拆分成训练集和测试集。训练集用于训练模型,测试集用于测试模型的准确度。在这里,我们可以使用sklearn库中的train_test_split函数进行数据集的划分。 接着,我们可以使用sklearn库中的KNeighborsClassifier类来实现KNN算法。该类中的重要参数有n_neighbors(K值)、weights(近邻的权重)、metric(距离度量方法)等。在这里,我们可以将K值设定为3,距离度量方法设定为欧氏距离。 最后,我们可以使用训练集中的数据来训练模型,并使用测试集中的数据对模型进行测试。 以下是使用Python实现KNN算法对鸢尾花数据进行分类的示例代码: python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 加载数据集 iris = load_iris() X = iris.data y = iris.target # 数据集拆分成训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 使用KNN算法进行分类 knn = KNeighborsClassifier(n_neighbors=3, weights='uniform', metric='euclidean') knn.fit(X_train, y_train) # 模型测试 accuracy = knn.score(X_test, y_test) print('模型准确率为:', accuracy) 执行以上代码,即可得到KNN算法对鸢尾花数据进行分类的准确率。
KNN(K-Nearest Neighbors)算法是一种常用的分类算法,它的基本思想是找到距离待分类样本最近的K个已知类别的样本点,然后将待分类样本归为出现最多的类别。 下面是Python实现KNN算法对鸢尾花分类的代码: python import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score class KNN: def __init__(self, k): self.k = k def fit(self, X_train, y_train): self.X_train = X_train self.y_train = y_train def predict(self, X_test): y_pred = [] for x in X_test: distances = [] for i in range(len(self.X_train)): distance = np.sqrt(np.sum((x - self.X_train[i]) ** 2)) distances.append((distance, self.y_train[i])) distances = sorted(distances) k_nearest_neighbors = distances[:self.k] k_nearest_neighbors_labels = [label for _, label in k_nearest_neighbors] most_common_label = max(set(k_nearest_neighbors_labels), key=k_nearest_neighbors_labels.count) y_pred.append(most_common_label) return y_pred data = load_iris() X = data.data y = data.target X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = KNN(k=5) model.fit(X_train, y_train) y_pred = model.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) 上述代码首先导入必要的库,然后定义了一个KNN类,其中__init__方法初始化了一个K值,fit方法用于训练模型,predict方法用于对测试样本进行预测。在predict方法中,首先计算测试样本与训练样本之间的距离,然后将距离最近的K个样本点的标签保存到一个列表中,最后统计标签列表中出现最多的标签作为预测结果。 接下来,我们加载鸢尾花数据集并将其分为训练集和测试集。然后,我们使用KNN模型对训练集进行训练,并使用测试集进行预测。最后,我们计算模型的精度并打印出来。

最新推荐

工业软件行业研究:工信部发声制造业“可靠性”,京属国企软件采购释放正版化信号.pdf

计算机 软件开发 数据报告 研究报告 行业报告 行业分析

基于MATLAB的PCB板缺陷检测(倾斜,个数统计).zip

基于MATLAB的PCB板缺陷检测(倾斜,个数统计).zip

计算机行业2023年中期策略报告:跨越奇点,人工智能全景投资框架.pdf

计算机 软件开发 数据报告 研究报告 行业报告 行业分析

基于MATLAB的汉字识别(写字板,GUI界面).zip

基于MATLAB的汉字识别(写字板,GUI界面).zip

基于MATLAB的手写汉字识别[Bp+模板算法,过程丰富,GUI框架].zip

基于MATLAB的手写汉字识别[Bp+模板算法,过程丰富,GUI框架]

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

无监督人脸特征传输与检索

1检索样式:无监督人脸特征传输与检索闽金虫1号mchong6@illinois.edu朱文生wschu@google.comAbhishek Kumar2abhishk@google.com大卫·福赛斯1daf@illinois.edu1伊利诺伊大学香槟分校2谷歌研究源源源参考输出参考输出参考输出查询检索到的图像(a) 眼睛/鼻子/嘴(b)毛发转移(c)姿势转移(d)面部特征检索图1:我们提出了一种无监督的方法来将局部面部外观从真实参考图像转移到真实源图像,例如,(a)眼睛、鼻子和嘴。与最先进的[10]相比,我们的方法能够实现照片般逼真的传输。(b) 头发和(c)姿势,并且可以根据不同的面部特征自然地扩展用于(d)语义检索摘要我们提出检索风格(RIS),一个无监督的框架,面部特征转移和检索的真实图像。最近的工作显示了通过利用StyleGAN潜在空间的解纠缠特性来转移局部面部特征的能力。RIS在以下方面改进了现有技术:1)引入

HALCON打散连通域

### 回答1: 要打散连通域,可以使用 HALCON 中的 `connection` 和 `disassemble_region` 函数。首先,使用 `connection` 函数将图像中的连通域连接起来,然后使用 `disassemble_region` 函数将连接后的连通域分离成单独的区域。下面是一个示例代码: ``` read_image(Image, 'example.png') Threshold := 128 Binary := (Image > Threshold) ConnectedRegions := connection(Binary) NumRegions :=

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

无监督身份再识别中的判别表示学习算法及领域适应技术的研究与应用

8526基于判别表示学习的无监督身份再识别Takashi Isobe1,2,Dong Li1,Lu Tian1,Weihua Chen3,Yi Shan1,ShengjinWang2*1 Xilinx Inc.,中国北京2清华大学3阿里巴巴集团{dongl,lutian,yishan}@xilinx.comjbj18@mails.tsinghua.edu.cnwgsg@tsinghua.edu.cnkugang. alibaba-inc.com摘要在这项工作中,我们解决的问题,无监督域适应的人重新ID注释可用于源域,但不为目标。以前的方法通常遵循两阶段优化管道,其中网络首先在源上进行预训练,然后使用通过特征聚类创建的伪标签在目标上进行微调。这种方法存在两个主要局限性。(1)标签噪声可能阻碍用于识别目标类别的区分特征的学习。(2)领域差距可能会阻碍知识从源到目标的转移。我们提出了三种技术方案来缓解(一)(b)第(1)款(c)第(1)款这些问题首先,我们提出了一个集群明智的对比学习算法(CCL)的特征学习和集群精炼的迭代优�