鸢尾花k-means聚类分析c语言代码示例
时间: 2024-09-28 07:07:36 浏览: 47
由于C语言本身的特性,直接提供完整的鸢尾花K-means聚类分析代码可能比较冗长且不易于理解。但这里可以给出一个简化的框架,你可以基于这个基础进行扩展:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
// 定义鸢尾花数据结构 (简化版)
typedef struct {
double sepal_length;
double sepal_width;
double petal_length;
double petal_width;
} IrisData;
// 计算欧氏距离
double euclidean_distance(IrisData *data1, IrisData *data2) {
// 省略具体计算细节...
}
int kmeans(IrisData *data, int n_samples, int n_clusters, IrisData *centroids, int max_iterations) {
// 初始化随机质心
for (int i = 0; i < n_clusters; i++) {
centroids[i] = data[rand() % n_samples];
}
// 主循环
for (int iteration = 0; iteration < max_iterations; iteration++) {
int cluster assignments[n_samples]; // 分配给每个簇的索引
for (int i = 0; i < n_samples; i++) {
cluster assignments[i] = -1;
}
// 分配样本到最近的质心
for (int i = 0; i < n_samples; i++) {
int closest_cluster = 0;
double min_distance = euclidean_distance(&data[i], ¢roids[0]);
for (int j = 1; j < n_clusters; j++) {
double dist = euclidean_distance(&data[i], ¢roids[j]);
if (dist < min_distance) {
min_distance = dist;
closest_cluster = j;
}
}
cluster_assignments[i] = closest_cluster;
}
// 更新质心
for (int j = 0; j < n_clusters; j++) {
IrisData new_centroid;
int count = 0;
for (int i = 0; i < n_samples; i++) {
if (cluster_assignments[i] == j) {
new_centroid.sepal_length += data[i].sepal_length;
new_centroid.sepal_width += data[i].sepal_width;
new_centroid.petal_length += data[i].petal_length;
new_centroid.petal_width += data[i].petal_width;
count++;
}
}
new_centroid.sepal_length /= count;
new_centroid.sepal_width /= count;
new_centroid.petal_length /= count;
new_centroid.petal_width /= count;
centroids[j] = new_centroid;
}
}
return 1; // 或者返回最终的簇中心...
}
int main() {
// 加载或生成鸢尾花数据
IrisData dataset[] = { ... };
int n_samples = sizeof(dataset) / sizeof(dataset[0]);
// 调用K-means
IrisData centroids[3]; // 假设3个簇
int result = kmeans(dataset, n_samples, 3, centroids, 100); // 运行100次迭代
// 打印结果
for (int i = 0; i < 3; i++) {
printf("Centroid %d: ", i);
// 输出质心坐标...
}
return 0;
}
```
请注意,上述代码仅为基本框架,实际应用中你需要根据实际情况处理数据输入、文件读取、距离计算以及结果可视化等部分。此外,K-means算法的性能和收敛速度在C语言中可能不如专门用于机器学习的数据科学库(如RapidJSON、NumPy等)高效。
阅读全文