k-means聚类算法c语言
时间: 2023-12-05 10:40:59 浏览: 125
k-means聚类算法c语言实现
4星 · 用户满意度95%
以下是K-means聚类算法的C语言实现步骤和核心代码(部分):
1. 首先需要定义一个结构体来表示数据点的坐标:
```c
typedef struct {
double x;
double y;
} Point;
```
2. 接着需要定义一个函数来计算两个数据点之间的距离:
```c
double distance(Point p1, Point p2) {
double dx = p1.x - p2.x;
double dy = p1.y - p2.y;
return sqrt(dx * dx + dy * dy);
}
```
3. 然后需要定义一个函数来随机生成初始聚类中心点:
```c
void initCentroids(int k, Point* centroids, int numPoints) {
int i, j;
for (i = 0; i < k; i++) {
int index = rand() % numPoints; centroids[i] = points[index];
for (j = 0; j < i; j++) {
if (centroids[i].x == centroids[j].x && centroids[i].y == centroids[j].y) {
i--;
break;
}
}
}
}
```
4. 接着需要定义一个函数来将数据点分配到最近的聚类中心点:
```c
void assignPointsToCentroids(int k, Point* centroids, int numPoints, int* assignments) {
int i, j;
for (i = 0; i < numPoints; i++) {
double minDistance = DBL_MAX;
int minIndex = -1;
for (j = 0; j < k; j++) {
double d = distance(points[i], centroids[j]);
if (d < minDistance) {
minDistance = d;
minIndex = j;
}
}
assignments[i] = minIndex;
}
}
```
5. 然后需要定义一个函数来重新计算聚类中心点的位置:
```c
void updateCentroids(int k, Point* centroids, int numPoints, int* assignments) {
int i, j;
for (i = 0; i < k; i++) {
double sumX = 0.0;
double sumY = 0.0;
int count = 0;
for (j = 0; j < numPoints; j++) {
if (assignments[j] == i) {
sumX += points[j].x;
sumY += points[j].y;
count++;
}
}
if (count > 0) {
centroids[i].x = sumX / count;
centroids[i].y = sumY / count;
}
}
}
```
6. 最后需要定义一个函数来实现K-means聚类算法的主要逻辑:
```c
void kMeansClustering(int k, Point* points, int numPoints, Point* centroids, int* assignments) {
initCentroids(k, centroids, numPoints);
int i;
for (i = 0; i < MAX_ITERATIONS; i++) {
assignPointsToCentroids(k, centroids, numPoints, assignments);
updateCentroids(k, centroids, numPoints, assignments);
}
}
```
阅读全文