euler法matlab程序
时间: 2024-05-09 19:20:20 浏览: 90
欧拉法(Euler)求解常微分方程的Matlab程序及案例.rar
以下是一个简单的Euler法的MATLAB程序示例:
```
% 定义微分方程
dydt = @(t, y) -2 * t * y + 4 * t^3;
% 初始条件
t0 = 0;
y0 = 1;
% 步长和时间范围
h = 0.1;
tspan = [0, 1];
% 用Euler方法求解微分方程
[t, y] = euler(dydt, tspan, y0, h);
% 绘制解的图像
plot(t, y, '-o');
xlabel('t');
ylabel('y');
title('Euler method');
% 定义Euler方法函数
function [t, y] = euler(dydt, tspan, y0, h)
t = tspan(1):h:tspan(2);
y = zeros(size(t));
y(1) = y0;
for i = 1:length(t)-1
y(i+1) = y(i) + dydt(t(i), y(i)) * h;
end
end
```
在此示例中,我们首先定义了微分方程 `dydt = @(t, y) -2 * t * y + 4 * t^3`,然后设置初始条件 `t0 = 0` 和 `y0 = 1`,以及步长 `h = 0.1` 和时间范围 `tspan = [0, 1]`。接下来,我们调用自己定义的Euler方法函数 `euler` 求解微分方程,并将结果存储在向量 `t` 和 `y` 中。最后,我们绘制了解的图像。
Euler方法函数 `euler` 采用微分方程 `dydt`、时间范围 `tspan`、初始条件 `y0` 和步长 `h` 作为输入参数,并返回时间向量 `t` 和解向量 `y`。在函数中,我们首先创建一个时间向量 `t`,然后使用初始条件 `y0` 初始化解向量 `y`。接下来,我们使用Euler方法求解微分方程,将每个时间步上的解存储在向量 `y` 中,并返回时间向量 `t` 和解向量 `y`。
阅读全文