{ "0x43": "/wAAAQAAAAIAQEi8YHgAeABCDgZYKA0BAgAA" }用什么类转换为对象

时间: 2023-08-29 11:09:41 浏览: 53
根据你提供的数据,可以看出它是一个 JSON 格式的字符串。你可以使用 JSON 库将其转换为相应的对象。 在 Java 中,常用的 JSON 库有 Jackson、Gson 和 FastJson 等。以下是使用 Jackson 库将 JSON 字符串转换为对象的示例代码: ```java import com.fasterxml.jackson.databind.ObjectMapper; public class Main { public static void main(String[] args) throws Exception { String jsonString = "{\"0x43\": \"/wAAAQAAAAIAQEi8YHgAeABCDgZYKA0BAgAA\"}"; ObjectMapper objectMapper = new ObjectMapper(); MyObject myObject = objectMapper.readValue(jsonString, MyObject.class); System.out.println(myObject); } public static class MyObject { private String value; public String getValue() { return value; } public void setValue(String value) { this.value = value; } @Override public String toString() { return "MyObject{" + "value='" + value + '\'' + '}'; } } } ``` 在上述代码中,我们定义了一个 `MyObject` 类来表示要转换的对象,其中包含一个名为 `value` 的属性。然后,我们使用 Jackson 的 `ObjectMapper` 类将 JSON 字符串转换为 `MyObject` 对象。 请注意,为了让上述代码正常运行,你需要添加 Jackson 的依赖。如果你使用 Maven,可以在 `pom.xml` 文件中添加以下依赖: ```xml <dependency> <groupId>com.fasterxml.jackson.core</groupId> <artifactId>jackson-databind</artifactId> <version>2.12.5</version> </dependency> ``` 如果你使用其他的 JSON 库,你需要根据相应的库文档提供的方式来进行转换。

相关推荐

用cc2530单片机实现以下功能: 在#include "ioCC2530.h #define LED1 P1_0 unsigned int counter=0; void initUARTO(void){ PERCFG = 0x00; POSEL = 0x3c; UOCSR|= 0x80; UOBAUD = 216; U0GCR = 10; UOUCR|= 0x80; UTXOIF = 0; EA= 1;void inittTimer1() CLKCONCMD &= 0x80;//时钟速度设置为32MHz T1CTL=0x0E;// 配置128分频,模比较计数工作模式,并开始启动 T1CCTLO|= 0x04: //设定timer1通道0比较 T1CCOL =50000 & 0xFF; // 把50 000的低8位写入T1CCOL T1CCOH =((50000 & 0xFF00) >> 8);// 把50 000的高8位写入T1CCOH T1IF=0; //清除timer1中断标志 T1STAT &=~0x01: //清除通道0中断标志 TIMIF &= ~0x40; //不产生定时器1的溢出中断 IEN1 |= 0x02; //使能定时器1的中断 EA=1; //使能全局中断}void UARTOSendByte(unsigned char c) { U0DBUF = C; while(!UTXOIF); / 等待TX中断标志,即UODBUF就绪 UTX0IF = 0; // 清零TX中断标志void UARTOSendString(unsigned char *str) while(*str != 10') UARTOSendByte(*str++); // 发送字节数据 #pragma vector = T1_VECTOR //中断服务子程序_interrupt void T1_ISR(void){ EA=0://禁止全局中断 counter++;11统计T1的溢出次数 T1STAT &= ~0x01;//清除通道0中断标志 EA= 1://使能全局中断void main(void) P1DIR |= 0x01:/*配置P1_0的方向为输出*1 LED1= 0; inittTimer10://初始化Timer1 initUARTO0: // UARTO初始化 while(1) if(counter>=15) //定时器每0.2s一次,15次时间为3s { counter=0; LED1= 1; UARTOSendString("Hello ! I am CC2530。ln'); LED1=0;} }基础上优化为 1.通过串口调试助手,在串口调试助手界面上显示“安徽工商职业学院” 2.字样“安徽工商职业学院”在调试助手界面上显示5次后停止显示。

解析这段usb枚举 // SUBINF1_DSCR: 0x09, //0 Size of this 0x24, //1 CS_interface 0x01, //2 HEADER subtype 0x00, //3 Revision of class specification-1.0 0x01, //4 0x09, //5 total size of class specific descriptors 0x00, //6 0x01, //7 Number of streaming interfaces 0x01, //8 MIDIStreaming interface 1 belong to this AudioControl interface // INF2_DSCR 0x09, //0 Size of this 0x04, //1 TYPE:interface 0x01, //2 Index of this interface 0x00, //3 Index of this alternate setting 0x02, //4 endpoint number //Have USB in and USB out //0x01, //4 endpoint number //Change for only USB out\no USB IN(2006.12.30) 0x01, //5 audio 0x03, //6 midistreaming 0x00, //7 unused 0x00, //8 Unused // SUBINF2_DSCR: 0x07, //0 Size of this 0x24, //1 CS_interface 0x01, //2 HEADER subtype 0x00, //3 Revision of class specification-1.0 0x01, //4 0x41, //5 total size of class specific descriptors 0x00, //6 // SUBINF3_DSCR: 0x6, 0x24, 0x2, 0x1, 0x1, 0x0, // SUBINF4_DSCR: 0x6, 0x24, 0x2, 0x2, 0x2, 0x0, // SUBINF5_DSCR: 0x09, //0 Size of this 0x24, //1 CS_interface 0x03, //2 HEADER subtype 0x01, //3 Revision of class specification-1.0 0x03, //4 0x01, //5 total size of class specific descriptors 0x02, //6 0x01, //7 Number of streaming interfaces 0x00, //8 MIDIStreaming interface 0 belong to this AudioControl interface // SUBINF6_DSCR: 0x09, //0 Size of this 0x24, //1 CS_interface 0x03, //2 HEADER subtype 0x02, //3 Revision of class specification-1.0 0x04, //4 0x01, //5 total size of class specific descriptors 0x01, //6 0x01, //7 Number of streaming interfaces 0x00, //8 MIDIStreaming interface 1 belong to this AudioControl interface // IN endpoint (mandatory for HID) // Standard int IN endpoint descriptor //EP81_DSCR: 0x09, //0 Size of this descriptor 0x05, //1 Descriptor type: endpoint 0x81, //2 IN endpoint 1 0x02, //3 bulk 0x40, //4 64bytes 0x00, // 0x00, //6 0x00, //7 0x00, //8 // SUBEP81_DSCR: 0x05, 0x25, 0x01, 0x01, 0x03, // OUT endpoint // Standard int OUT endpoint descriptor //EP02_DSCR: 0x09, //0 Size of this descriptor 0x05, //1 Descriptor type: endpoint 0x02, //2 OUT endpoint 2 0x02, //3 bulk 0x40, //4 64bytes //0x10, //16bytes 0x00, // 0x00, //6 0x00, //7 0x00, //8 // SUBEP02_DSCR: 0x05, 0x25, 0x01, 0x01, 0x01

这段是hid的描述 能帮我解释一下吗0x05, 0x01, // Usage Page (Generic Desktop) 0x09, 0x02, // Usage (Mouse) 0xA1, 0x01, // Collection (Application) 0x85, HID_RPT_ID_MOUSE_IN, // Report Id (1) 0X01 0x09, 0x01, // Usage (Pointer) 0xA1, 0x00, // Collection (Physical) 0x05, 0x09, // Usage Page (Buttons) 0x19, 0x01, // Usage Minimum (01) - Button 1 0x29, 0x03, // Usage Maximum (03) - Button 3 0x15, 0x00, // Logical Minimum (0) 0x25, 0x01, // Logical Maximum (1) 0x75, 0x01, // Report Size (1) 0x95, 0x03, // Report Count (3) 0x81, 0x02, // Input (Data, Variable, Absolute) - Button states 0x75, 0x05, // Report Size (5) 0x95, 0x01, // Report Count (1) 0x81, 0x01, // Input (Constant) - Padding or Reserved bits 0x05, 0x01, // Usage Page (Generic Desktop) 0x09, 0x30, // Usage (X) 0x09, 0x31, // Usage (Y) 0x09, 0x38, // Usage (Wheel) 0x15, 0x81, // Logical Minimum (-127) 0x25, 0x7F, // Logical Maximum (127) 0x75, 0x08, // Report Size (8) 0x95, 0x03, // Report Count (3) 0x81, 0x06, // Input (Data, Variable, Relative) - X & Y coordinate 0xC0, // End Collection 0xC0, // End Collection 0x05, 0x01, // Usage Pg (Generic Desktop) 0x09, 0x06, // Usage (Keyboard) 0xA1, 0x01, // Collection: (Application) 0x85, HID_RPT_ID_KEY_IN, // Report Id (2) // 0x05, 0x07, // Usage Pg (Key Codes) 0x19, 0xE0, // Usage Min (224) 0x29, 0xE7, // Usage Max (231) 0x15, 0x00, // Log Min (0) 0x25, 0x01, // Log Max (1) // // Modifier byte 0x75, 0x01, // Report Size (1) 0x95, 0x08, // Report Count (8) 0x81, 0x02, // Input: (Data, Variable, Absolute) // // Reserved byte 0x95, 0x01, // Report Count (1) 0x75, 0x08, // Report Size (8) 0x81, 0x01, // Input: (Constant) // // LED report 0x95, 0x05, // Report Count (5) 0x75, 0x01, // Report Size (1) 0x05, 0x08, // Usage Pg (LEDs) 0x19, 0x01, // Usage Min (1) 0x29, 0x05, // Usage Max (5) 0x91, 0x02, // Output: (Data, Variable, Absolute) // // LED report padding 0x95, 0x01, // Report Count (1) 0x75, 0x03, // Report Size (3) 0x91, 0x01, // Output: (Constant) // // Key arrays (6 bytes) 0x95, 0x06, // Report Count (6) 0x75, 0x08, // Report Size (8) 0x15, 0x00, // Log Min (0) 0x25, 0x65, // Log Max (101) 0x05, 0x07, // Usage Pg (Key Codes) 0x19, 0x00, // Usage Min (0) 0x29, 0x65, // Usage Max (101) 0x81, 0x00, // Input: (Data, Array) // 0xC0, // End Collection

给以下代码添加注释#include <reg52.h> #include <intrins.h> #define u8 unsigned char #define u16 unsigned int #define DECODE_MODE 0x09 #define INTENSITY 0x0A #define SCAN_LIMIT 0x0B #define SHUT_DOWN 0x0C #define DISPLAY_TEST 0x0F #define BLOCKS 4 sbit MAX7219_CLK = P2^2; sbit MAX7219_CS = P2^1; sbit MAX7219_DIN = P2^0; u8 code bytes[] = { 0x3e,0x63,0x63,0x7f,0x63,0x63,0x63,0x63, //A 0x7e,0x63,0x63,0x7e,0x63,0x63,0x63,0x7e, //B 0x3e,0x63,0x63,0x60,0x60,0x63,0x63,0x3e, //C }; u8 val[BLOCKS]; u8 character_len = sizeof(bytes) / 8; void delay(u16 x) { u16 i,j; for(i = 0; i < x; i++) for(j = 0;j < 112; j++); } void Max7219_writeByte(u8 dat) { u8 i; MAX7219_CS = 0; for(i = 8; i >= 1; i--) { MAX7219_CLK = 0; MAX7219_DIN = dat & 0x80; // &10000000, 取最高位 dat = dat << 1; MAX7219_CLK = 1; } } void Max7219_singeWrite(u8 index, u8 addr, u8 dat) { MAX7219_CS = 0; Max7219_writeByte(addr); Max7219_writeByte(dat); while(index--) { Max7219_writeByte(0x00); Max7219_writeByte(0x00); } MAX7219_CS = 1; } void Max7219_multiWrite(u8 addr, u8 len, u8* dat) { MAX7219_CS = 0; while(len--) { Max7219_writeByte(addr); Max7219_writeByte(*dat++); } MAX7219_CS = 1; } void Max7219_init(void) { u8 i; for (i = 0; i < BLOCKS; i++) { Max7219_singeWrite(i, SHUT_DOWN, 0x01); // 0x00:shutdown, 0x01:normal Max7219_singeWrite(i, DECODE_MODE, 0x00); // No decode Max7219_singeWrite(i, INTENSITY, 0x03); // 0x00:min, 0x0F:max Max7219_singeWrite(i, SCAN_LIMIT, 0x07); // Display 8 digits Max7219_singeWrite(i, DISPLAY_TEST, 0x00); // 0x00:normal, 0x01:test mode } }

最新推荐

recommend-type

解决-BASH: /HOME/JAVA/JDK1.8.0_221/BIN/JAVA: 权限不够问题

主要介绍了解决-BASH: /HOME/JAVA/JDK1.8.0_221/BIN/JAVA: 权限不够的问题,需要的朋友可以参考下
recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解