根据ratings.csv文件用ItemCF算法得到每部电影id对应的最相似的五部电影id,并将电影id,相似电影id,存入数据库表
时间: 2023-06-07 14:12:00 浏览: 121
首先,您需要导入ratings.csv文件,然后使用ItemCF算法获取每部电影id对应的最相似的五部电影id。您可以使用以下Python代码实现此操作:
```
import pandas as pd
import numpy as np
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
# Load the ratings data
ratings_data = pd.read_csv('ratings.csv')
# Create a pivot table
ratings_pivot = ratings_data.pivot(index='userId', columns='movieId', values='rating').fillna(0)
# Convert the pivot table to a matrix
mat_movie_features = csr_matrix(ratings_pivot.values)
# Create a NearestNeighbors model
model_knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=5)
# Fit the model
model_knn.fit(mat_movie_features)
# Find the nearest neighbors for each movie
distances, indices = model_knn.kneighbors(mat_movie_features)
# Print the results
for i in range(len(ratings_pivot)):
movie_id = ratings_pivot.index[i]
similar_movies = []
for j in range(1, len(indices[i])):
similar_movie_id = ratings_pivot.index[indices[i][j]]
similar_movies.append(similar_movie_id)
print(movie_id, similar_movies)
```
Once you have obtained the most similar movie ids for each movie id, you can store the data in a database table using SQL commands. Here is an example SQL command to create a table for storing the movie similarity data:
```
CREATE TABLE movie_similarity (
movie_id INT,
similar_movies TEXT
);
```
You can then insert the movie similarity data into the table using SQL commands. Here is an example SQL command to insert the data for one movie:
```
INSERT INTO movie_similarity (movie_id, similar_movies) VALUES (1, '2,3,4,5,6');
```
You can repeat this command for each movie to insert all of the movie similarity data into the table.
阅读全文