mmdetection voc格式转coco
时间: 2023-09-30 11:09:52 浏览: 166
prepare_detection_dataset:将数据集转换为cocovoc格式
你可以使用一些工具和代码来将VOC格式的数据转换为COCO格式,以便在mmdetection中使用。以下是一种可能的方法:
1. 首先,确保你已经安装了`mmcv`和`mmdet`库。你可以使用以下命令安装它们:
```
pip install mmcv-full mmdet
```
2. 下载并解压VOC数据集,并将其组织为以下结构:
```
VOCdevkit/
├── VOC2007
│ ├── Annotations
│ ├── ImageSets
│ └── JPEGImages
└── VOC2012
├── Annotations
├── ImageSets
└── JPEGImages
```
3. 创建一个Python脚本,例如`voc2coco.py`,并使用以下代码来进行VOC到COCO格式转换:
```python
import os
import json
from xml.etree.ElementTree import Element, SubElement, tostring
from xml.dom.minidom import parseString
def parse_voc_annotation(ann_dir, img_dir, labels=[]):
# 读取VOC标注文件和图像文件夹
ann_files = sorted(os.listdir(ann_dir))
img_files = sorted(os.listdir(img_dir))
assert len(ann_files) == len(img_files), "Number of annotation files doesn't match number of image files"
# 构建COCO格式标注数据结构
coco_data = {
"images": [],
"annotations": [],
"categories": []
}
category_id = 0
for i, ann_file in enumerate(ann_files):
img_file = img_files[i]
img_id = i + 1
# 解析VOC标注文件
ann_path = os.path.join(ann_dir, ann_file)
tree = parseString(open(ann_path).read())
root = tree.documentElement
# 获取图像信息
img_width = int(root.getElementsByTagName("width")[0].childNodes[0].data)
img_height = int(root.getElementsByTagName("height")[0].childNodes[0].data)
img_name = img_file.split(".")[0]
# 添加图像信息到coco_data["images"]
coco_data["images"].append({
"file_name": img_file,
"height": img_height,
"width": img_width,
"id": img_id
})
# 解析VOC标注信息
objects = root.getElementsByTagName("object")
for obj in objects:
name = obj.getElementsByTagName("name")[0].childNodes[0].data
if name not in labels:
labels.append(name)
category_id = labels.index(name) + 1
bbox = obj.getElementsByTagName("bndbox")[0]
xmin = int(bbox.getElementsByTagName("xmin")[0].childNodes[0].data)
ymin = int(bbox.getElementsByTagName("ymin")[0].childNodes[0].data)
xmax = int(bbox.getElementsByTagName("xmax")[0].childNodes[0].data)
ymax = int(bbox.getElementsByTagName("ymax")[0].childNodes[0].data)
width = xmax - xmin
height = ymax - ymin
# 添加标注信息到coco_data["annotations"]
coco_data["annotations"].append({
"image_id": img_id,
"category_id": category_id,
"bbox": [xmin, ymin, width, height],
"area": width * height,
"iscrowd": 0,
"id": len(coco_data["annotations"]) + 1
})
# 构建coco_data["categories"]
for i, label in enumerate(labels):
coco_data["categories"].append({
"id": i + 1,
"name": label,
"supercategory": "object"
})
return coco_data
if __name__ == '__main__':
ann_dir = 'VOCdevkit/VOC2007/Annotations'
img_dir = 'VOCdevkit/VOC2007/JPEGImages'
labels = []
coco_data = parse_voc_annotation(ann_dir, img_dir, labels)
# 保存为COCO格式的JSON文件
with open('annotations.json', 'w') as f:
json.dump(coco_data, f)
```
4. 运行`voc2coco.py`脚本,它将生成一个名为`annotations.json`的COCO格式标注文件。
现在,你可以使用这个生成的COCO格式的标注文件在mmdetection中进行训练或评估。
阅读全文