MLP实现多步预测pytorch代码
时间: 2024-05-21 19:08:20 浏览: 114
MLP(多层感知机)是一种常用的神经网络模型,可以用于多步预测任务。下面是一个使用PyTorch实现MLP进行多步预测的代码示例:
```python
import torch
import torch.nn as nn
# 定义MLP模型
class MLP(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(MLP, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, output_size)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
# 定义训练函数
def train(model, train_data, train_labels, num_epochs, learning_rate):
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
inputs = torch.Tensor(train_data)
labels = torch.Tensor(train_labels)
# 前向传播
outputs = model(inputs)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))
# 定义测试函数
def test(model, test_data):
inputs = torch.Tensor(test_data)
outputs = model(inputs)
return outputs.detach().numpy()
# 示例数据
train_data = [[0.1], [0.2], [0.3], [0.4], [0.5]]
train_labels = [[0.2], [0.3], [0.4], [0.5], [0.6]]
test_data = [[0.6], [0.7], [0.8]]
# 定义模型参数
input_size = 1
hidden_size = 10
output_size = 1
num_epochs = 1000
learning_rate = 0.01
# 创建模型实例
model = MLP(input_size, hidden_size, output_size)
# 训练模型
train(model, train_data, train_labels, num_epochs, learning_rate)
# 测试模型
predictions = test(model, test_data)
print("预测结果:", predictions)
```
这段代码实现了一个简单的MLP模型,用于进行多步预测任务。其中,`MLP`类定义了MLP模型的结构,`train`函数用于训练模型,`test`函数用于测试模型。你可以根据自己的数据和需求进行相应的修改和调整。
阅读全文