最大池化层和平均池化层的作用
时间: 2023-06-13 08:06:19 浏览: 1368
pytorch torch.nn.AdaptiveAvgPool2d()自适应平均池化函数详解
最大池化层和平均池化层是卷积神经网络(CNN)中常用的两种池化操作。
最大池化层的作用是从输入的特征图中提取最显著的特征,即在每个池化窗口中找到最大的值并将其作为输出。它可以帮助网络减少特征图的大小,并且可以通过提取最显著的特征来帮助网络识别物体。
平均池化层的作用是对输入的特征图进行平均值池化。它可以帮助网络减少特征图的大小,并且可以通过对特征图进行平均来减少过拟合的风险,因为它会减少特征图中的噪声。
总之,最大池化层和平均池化层都是用于减少特征图的大小和提取最重要的特征。它们在卷积神经网络中都有着重要的应用。
阅读全文