CONTEXT_ALL
时间: 2024-04-14 21:23:59 浏览: 189
CONTEXT_ALL是CSDN自主开发的一种上下文感知的对话模型。它是基于深度学习技术和大规模数据集训练而成的,能够理解用户的问题并给出准确的回答。CONTEXT_ALL模型具有以下特点:
1. 上下文感知:CONTEXT_ALL模型能够理解对话中的上下文信息,能够根据之前的对话内容进行推理和回答,提供更连贯、准确的回答。
2. 多领域知识:CONTEXT_ALL模型经过大规模数据集的训练,涵盖了多个领域的知识,可以回答各种类型的问题,包括技术、科学、文化等多个领域。
3. 自主学习:CONTEXT_ALL模型具备自主学习的能力,可以通过与用户的对话不断积累知识和经验,提高回答的准确性和智能性。
相关问题
@app.route('/') def index(): data_all_new = [] data_all_down = [] marine_organisms = Organism_data.query.order_by('id').all() marine_hydrologys = Hydrology_data.query.order_by('id').all() marine_chemistrys = Chemistry_data.query.order_by('id').all() data_all_new = data_all_new + marine_hydrologys data_all_new = data_all_new + marine_organisms data_all_new = data_all_new + marine_chemistrys data_all_down = data_all_new.copy() cmpfun_new = operator.attrgetter('data_time') n_new, reverse=True)cmpfun_down = operator.attrgetter('down_time') data_all_down.sort(key=cmpfun_down, reverse=True) articles = Article.query.order_by('time').limit(5).all() context = { 'banners': Banner.query.order_by('id').all(), 'data_all_new': data_all_new, 'data_all_down': data_all_down, 'articles': articles } return render_template('index.html', **context)类图怎么画
在这段代码中,没有定义任何类,只有使用了已经定义好的模型类。因此,类图只需要展示这三个模型类即可。
下面是一个简单的UML类图示例,其中包含了三个模型类Organism_data、Hydrology_data和Chemistry_data:
```
+------------------+ +------------------+ +------------------+
| Organism_data | | Hydrology_data | | Chemistry_data |
+------------------+ +------------------+ +------------------+
| id | | id | | id |
| data_name | | data_name | | data_name |
| data_time | | data_time | | data_time |
| data_file | | data_file | | data_file |
+------------------+ +------------------+ +------------------+
```
这个类图中,每个模型类都包含了四个属性:id、data_name、data_time和data_file。这些属性对应了每个数据表中的字段。
You have access to multiple clusters from your main terminal through kubectl contexts. Write all those context names into /opt/course/1/contexts. Next write a command to display the current context into /opt/course/1/context_default_kubectl.sh, the command should use kubectl. Finally write a second command doing the same thing into /opt/course/1/context_default_no_kubectl.sh, but without the use of kubectl.
I'm sorry, but as an AI language model, I don't have access to your system resources or terminal commands. However, I can provide you with the general steps to execute those tasks.
To write all the context names into /opt/course/1/contexts, you can use the command:
```
kubectl config get-contexts --output=name > /opt/course/1/contexts
```
This will get all the context names and save them to the specified file.
To display the current context using kubectl and write it to /opt/course/1/context_default_kubectl.sh, you can use the command:
```
kubectl config current-context > /opt/course/1/context_default_kubectl.sh
```
This will get the current context and save it to the specified file.
To display the current context without using kubectl and write it to /opt/course/1/context_default_no_kubectl.sh, you can use the command:
```
cat ~/.kube/config | grep current-context | awk '{print $2}' > /opt/course/1/context_default_no_kubectl.sh
```
This will get the current context using the ~/.kube/config file and save it to the specified file.
阅读全文