import random import fitness class optimizing(): def __int__(self): self.finess_data=fitness.fitness() #print(self.finess_data) def p(self): print(self.finess_data) data=optimizing() data.p() 报错:C:\Users\z84259074\AppData\Local\Programs\Python\Python310\python310.exe D:/Users/z84259074/PycharmProjects/参数自优化/self_optimizing.py Traceback (most recent call last): File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 11, in <module> data.p() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 8, in p print(self.finess_data) AttributeError: 'optimizing' object has no attribute 'finess_data'

时间: 2023-12-01 17:02:47 浏览: 81
PDF

tcp-ip卷一中文版

这个错误是因为在 `__int__()` 方法中,使用了双下划线 `__` 代替了双下划线 `__init__()` 方法的名称。在 Python 中,类的构造方法应该被命名为 `__init__()`,而不是 `__int__()`。因此,你需要将 `__int__()` 改为 `__init__()`。 修改后的代码如下: ```python import random import fitness class optimizing(): def __init__(self): self.finess_data = fitness.fitness() def p(self): print(self.finess_data) data = optimizing() data.p() ``` 这样就可以正确地初始化 `optimizing` 类的实例对象并调用 `p()` 方法了。
阅读全文

相关推荐

bs_data = w_data[w_data['波束场景No'] == cross_data['波束场景No'][0]] 报错:Traceback (most recent call last): File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3652, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 147, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 176, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 7080, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 7088, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: '波束场景No' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 127, in <module> data = optimizing() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 18, in __init__ self.optimizing_main() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 120, in optimizing_main self.child2=self.mutation_cdata(fitness_data,self.cross_data) File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 86, in mutation_cdata bs_data = w_data[w_data['波束场景No'] == cross_data['波束场景No'][0]] File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\frame.py", line 3761, in __getitem__ indexer = self.columns.get_loc(key) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3654, in get_loc raise KeyError(key) from err KeyError: '波束场景No'

(random.randint(0, bs_data[12]-1))*3+bs_data[8] 报错:Traceback (most recent call last): File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3652, in get_loc return self._engine.get_loc(casted_key) File "pandas\_libs\index.pyx", line 147, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\index.pyx", line 176, in pandas._libs.index.IndexEngine.get_loc File "pandas\_libs\hashtable_class_helper.pxi", line 7080, in pandas._libs.hashtable.PyObjectHashTable.get_item File "pandas\_libs\hashtable_class_helper.pxi", line 7088, in pandas._libs.hashtable.PyObjectHashTable.get_item KeyError: 12 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 128, in <module> data = optimizing() File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 15, in __init__ self.optimizing_main() File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 124, in optimizing_main self.child2=self.mutation_cdata(fitness_data,self.cross_data) File "d:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 92, in mutation_cdata print('cross_data[波束场景No]',bs_data[12]) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\frame.py", line 3761, in __getitem__ indexer = self.columns.get_loc(key) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\base.py", line 3654, in get_loc raise KeyError(key) from err KeyError: 12

Traceback (most recent call last): File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\range.py", line 345, in get_loc return self._range.index(new_key) ValueError: 17 is not in range The above exception was the direct cause of the following exception: Traceback (most recent call last): File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 107, in <module> data = optimizing() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 18, in __init__ self.optimizing_main() File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 101, in optimizing_main self.child1=self.mutation(fitness_data,gene_len) File "D:\Users\z84259074\PycharmProjects\参数自优化\self_optimizing.py", line 66, in mutation bs_data=w_data.loc[random.randint(0, len(w_data))] File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexing.py", line 1103, in __getitem__ return self._getitem_axis(maybe_callable, axis=axis) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexing.py", line 1343, in _getitem_axis return self._get_label(key, axis=axis) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexing.py", line 1293, in _get_label return self.obj.xs(label, axis=axis) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\generic.py", line 4095, in xs loc = index.get_loc(key) File "C:\Users\z84259074\AppData\Local\Programs\Python\Python310\lib\site-packages\pandas\core\indexes\range.py", line 347, in get_loc raise KeyError(key) from err KeyError: 17报错如何修改

0. Metadata/Provenance study.set_user_attr('pykeen_version', get_version()) study.set_user_attr('pykeen_git_hash', get_git_hash()) # 1. Dataset # FIXME difference between dataset class and string # FIXME how to handle if dataset or factories were set? Should have been # part of https://github.com/mali-git/POEM_develop/pull/483 study.set_user_attr('dataset', dataset) # 2. Model model: Type[Model] = get_model_cls(model) study.set_user_attr('model', normalize_string(model.__name__)) logger.info(f'Using model: {model}') # 3. Loss loss: Type[Loss] = model.loss_default if loss is None else get_loss_cls(loss) study.set_user_attr('loss', normalize_string(loss.__name__, suffix=_LOSS_SUFFIX)) logger.info(f'Using loss: {loss}') # 4. Regularizer regularizer: Type[Regularizer] = ( model.regularizer_default if regularizer is None else get_regularizer_cls(regularizer) ) study.set_user_attr('regularizer', regularizer.get_normalized_name()) logger.info(f'Using regularizer: {regularizer}') # 5. Optimizer optimizer: Type[Optimizer] = get_optimizer_cls(optimizer) study.set_user_attr('optimizer', normalize_string(optimizer.__name__)) logger.info(f'Using optimizer: {optimizer}') # 6. Training Loop training_loop: Type[TrainingLoop] = get_training_loop_cls(training_loop) study.set_user_attr('training_loop', training_loop.get_normalized_name()) logger.info(f'Using training loop: {training_loop}') if training_loop is SLCWATrainingLoop: negative_sampler: Optional[Type[NegativeSampler]] = get_negative_sampler_cls(negative_sampler) study.set_user_attr('negative_sampler', negative_sampler.get_normalized_name()) logger.info(f'Using negative sampler: {negative_sampler}') else: negative_sampler: Optional[Type[NegativeSampler]] = None # 7. Training stopper: Type[Stopper] = get_stopper_cls(stopper) if stopper is EarlyStopper and training_kwargs_ranges and 'epochs' in training_kwargs_ranges: raise ValueError('can not use early stopping while optimizing epochs') # 8. Evaluation evaluator: Type[Evaluator] = get_evaluator_cls(evaluator) study.set_user_attr('evaluator', evaluator.get_normalized_name()) logger.info(f'Using evaluator: {evaluator}') if metric is None: metric = 'adjusted_mean_rank' study.set_user_attr('metric', metric) logger.info(f'Attempting to {direction} {metric}')解释

最新推荐

recommend-type

新版CCNP教程ONT_Vol.5

【新版CCNP教程ONT_Vol.5】是Cisco Certified Network Professional (CCNP)认证课程的一部分,专注于Optimizing Converged Cisco Networks (ONT)的知识领域。这个教程版本为2.0,旨在帮助学习者深入理解如何优化和...
recommend-type

微软内部资料-SQL性能优化5

 Describe what statistics are used for and how they can help in optimizing query performance.  Describe how queries are optimized.  Analyze the information collected from various tools.  ...
recommend-type

AVR单片机项目-ADC键盘(源码+仿真+效果图).zip

使用adc功能来判断不同电压,那必定是通过电压的不同来区分的,这就需要按键与电阻进行组合,我设计打算使用正比关系的按键阻值,这样会比较好在程序判断,最后就如仿真图那样设计,按键按下让某部分电路短路,剩下的电路得到不同的电压值,而不同按键按下,对应的电阻值是10k的倍数,很好区分。而基地的电阻设为10k,按键靠近gnd的电压值最小,远离则慢慢增大,可大概计算出来的,分压的电压为5v。按键不按时为0v,有按键按的电压范围为2.5v~0.238v。然后用以前编写好的数码管驱动拿过来用,也就是用动态扫描的方式进行显示的。然后编写adc代码,根据atmega16的数据手册就可以慢慢写出来了,即配置好ADMUX、ADCSRA寄存器,使用单次触发的方式,写好对应的函数,在初始化之后,使用定时器1中断进行adc的读取和数码管的刷新显示。而adc对应按键的判断也使用了for循环对1024分成1~21份,对其附近符合的值即可判断为按键i-1,可直接显示出来,而误差值可以多次测量后进行调整。 使用adc功能来判断不同电压,那必定是通过电压的不同来区分的,这就需要按键与电阻进行组合,我设计打算使用正比关系的按
recommend-type

CoreOS部署神器:configdrive_creator脚本详解

资源摘要信息:"配置驱动器(cloud-config)生成器是一个用于在部署CoreOS系统时,通过编写用户自定义项的脚本工具。这个脚本的核心功能是生成包含cloud-config文件的configdrive.iso映像文件,使得用户可以在此过程中自定义CoreOS的配置。脚本提供了一个简单的用法,允许用户通过复制、编辑和执行脚本的方式生成配置驱动器。此外,该项目还接受社区贡献,包括创建新的功能分支、提交更改以及将更改推送到远程仓库的详细说明。" 知识点: 1. CoreOS部署:CoreOS是一个轻量级、容器优化的操作系统,专门为了大规模服务器部署和集群管理而设计。它提供了一套基于Docker的解决方案来管理应用程序的容器化。 2. cloud-config:cloud-config是一种YAML格式的数据描述文件,它允许用户指定云环境中的系统配置。在CoreOS的部署过程中,cloud-config文件可以用于定制系统的启动过程,包括用户管理、系统服务管理、网络配置、文件系统挂载等。 3. 配置驱动器(ConfigDrive):这是云基础设施中使用的一种元数据服务,它允许虚拟机实例在启动时通过一个预先配置的ISO文件读取自定义的数据。对于CoreOS来说,这意味着可以在启动时应用cloud-config文件,实现自动化配置。 4. Bash脚本:configdrive_creator.sh是一个Bash脚本,它通过命令行界面接收输入,执行系统级任务。在本例中,脚本的目的是创建一个包含cloud-config的configdrive.iso文件,方便用户在CoreOS部署时使用。 5. 配置编辑:脚本中提到了用户需要编辑user_data文件以满足自己的部署需求。user_data.example文件提供了一个cloud-config的模板,用户可以根据实际需要对其中的内容进行修改。 6. 权限设置:在执行Bash脚本之前,需要赋予其执行权限。命令chmod +x configdrive_creator.sh即是赋予该脚本执行权限的操作。 7. 文件系统操作:生成的configdrive.iso文件将作为虚拟机的配置驱动器挂载使用。用户需要将生成的iso文件挂载到一个虚拟驱动器上,以便在CoreOS启动时读取其中的cloud-config内容。 8. 版本控制系统:脚本的贡献部分提到了Git的使用,Git是一个开源的分布式版本控制系统,用于跟踪源代码变更,并且能够高效地管理项目的历史记录。贡献者在提交更改之前,需要创建功能分支,并在完成后将更改推送到远程仓库。 9. 社区贡献:鼓励用户对项目做出贡献,不仅可以通过提问题、报告bug来帮助改进项目,还可以通过创建功能分支并提交代码贡献自己的新功能。这是一个开源项目典型的协作方式,旨在通过社区共同开发和维护。 在使用configdrive_creator脚本进行CoreOS配置时,用户应当具备一定的Linux操作知识、对cloud-config文件格式有所了解,并且熟悉Bash脚本的编写和执行。此外,需要了解如何使用Git进行版本控制和代码贡献,以便能够参与到项目的进一步开发中。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【在线考试系统设计秘籍】:掌握文档与UML图的关键步骤

![在线考试系统文档以及其用例图、模块图、时序图、实体类图](http://bm.hnzyzgpx.com/upload/info/image/20181102/20181102114234_9843.jpg) # 摘要 在线考试系统是一个集成了多种技术的复杂应用,它满足了教育和培训领域对于远程评估的需求。本文首先进行了需求分析,确保系统能够符合教育机构和学生的具体需要。接着,重点介绍了系统的功能设计,包括用户认证、角色权限管理、题库构建、随机抽题算法、自动评分及成绩反馈机制。此外,本文也探讨了界面设计原则、前端实现技术以及用户测试,以提升用户体验。数据库设计部分包括选型、表结构设计、安全性
recommend-type

如何在Verilog中实现一个参数化模块,并解释其在模块化设计中的作用与优势?

在Verilog中实现参数化模块是一个高级话题,这对于设计复用和模块化编程至关重要。参数化模块允许设计师在不同实例之间灵活调整参数,而无需对模块的源代码进行修改。这种设计方法是硬件描述语言(HDL)的精髓,能够显著提高设计的灵活性和可维护性。要创建一个参数化模块,首先需要在模块定义时使用`parameter`关键字来声明一个或多个参数。例如,创建一个参数化宽度的寄存器模块,可以这样定义: 参考资源链接:[Verilog经典教程:从入门到高级设计](https://wenku.csdn.net/doc/4o3wyv4nxd?spm=1055.2569.3001.10343) ``` modu
recommend-type

探索CCR-Studio.github.io: JavaScript的前沿实践平台

资源摘要信息:"CCR-Studio.github.io" CCR-Studio.github.io 是一个指向GitHub平台上的CCR-Studio用户所创建的在线项目或页面的链接。GitHub是一个由程序员和开发人员广泛使用的代码托管和版本控制平台,提供了分布式版本控制和源代码管理功能。CCR-Studio很可能是该项目或页面的负责团队或个人的名称,而.github.io则是GitHub提供的一个特殊域名格式,用于托管静态网站和博客。使用.github.io作为域名的仓库在GitHub Pages上被直接识别为网站服务,这意味着CCR-Studio可以使用这个仓库来托管一个基于Web的项目,如个人博客、项目展示页或其他类型的网站。 在描述中,同样提供的是CCR-Studio.github.io的信息,但没有更多的描述性内容。不过,由于它被标记为"JavaScript",我们可以推测该网站或项目可能主要涉及JavaScript技术。JavaScript是一种广泛使用的高级编程语言,它是Web开发的核心技术之一,经常用于网页的前端开发中,提供了网页与用户的交云动性和动态内容。如果CCR-Studio.github.io确实与JavaScript相关联,它可能是一个演示项目、框架、库或与JavaScript编程实践有关的教育内容。 在提供的压缩包子文件的文件名称列表中,只有一个条目:"CCR-Studio.github.io-main"。这个文件名暗示了这是一个主仓库的压缩版本,其中包含了一个名为"main"的主分支或主文件夹。在Git版本控制中,主分支通常代表了项目最新的开发状态,开发者在此分支上工作并不断集成新功能和修复。"main"分支(也被称为"master"分支,在Git的新版本中推荐使用"main"作为默认主分支名称)是项目的主干,所有其他分支往往都会合并回这个分支,保证了项目的稳定性和向前推进。 在IT行业中,"CCR-Studio.github.io-main"可能是一个版本控制仓库的快照,包含项目源代码、配置文件、资源文件、依赖管理文件等。对于个人开发者或团队而言,这种压缩包能够帮助他们管理项目版本,快速部署网站,以及向其他开发者分发代码。它也可能是用于备份目的,确保项目的源代码和相关资源能够被安全地存储和转移。在Git仓库中,通常可以使用如git archive命令来创建当前分支的压缩包。 总体而言,CCR-Studio.github.io资源表明了一个可能以JavaScript为主题的技术项目或者展示页面,它在GitHub上托管并提供相关资源的存档压缩包。这种项目在Web开发社区中很常见,经常被用来展示个人或团队的开发能力,以及作为开源项目和代码学习的平台。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

三维点云里程碑:PointNet++模型完全解析及优化指南

![pointnet++模型(带控制流)的pytorch转化onnx流程记录](https://discuss.pytorch.org/uploads/default/original/3X/a/2/a2978662db0ace328772db931823d6020c794488.png) # 摘要 三维点云数据是计算机视觉和机器人领域研究的热点,它能够提供丰富的空间信息。PointNet++作为一种专门处理点云数据的深度学习模型,通过其特有的分层采样策略和局部区域特征提取机制,在三维物体识别和分类任务上取得了突破性进展。本文深入探讨了PointNet++模型的理论基础、实践详解以及优化策略