void CostShortPath(Graph G, int v0, int**& P, float*& D) { // P 的int类型二维数组是为了按顺序输出更方便 所以 P 的某一个值应该代表 顺序 int v, w; P = new int* [199]; bool final[199]; // final 是一个长度为 199 的 bool 类型一维数组 // final[v] 为 true 当且仅当 v 已经实现最短路径 for (int p = 0; p < 199; ++p) { P[p] = new int[199]; } D = new float[199]; for (v = 0; v < 199; ++v) { final[v] = false; D[v] = G.arcs[v0][v].cost; for (int w = 0; w < 199; ++w) P[v][w] = 0; if (D[v] < INFINITY) {// v代表的是 和起点直接相连的城市索引 P[v][v0] = 1; P[v][v] = 2; } } D[v0] = 0; final[v0] = true; for (int i = 1; i < 199; ++i) { // 其他198个顶点 float min = INFINITY; for (w = 0; w < 199; ++w) { // 寻找“次短路径” if (!final[w]) { if (D[w] < min) { v = w; min = D[w]; } } } final[v] = true; for (w = 0; w < 199; ++w) { if (!final[w] && (min + G.arcs[v][w].cost < D[w])) { D[w] = min + G.arcs[v][w].cost; memcpy(P[w], P[v], 199 * sizeof(int)); P[w][w] = P[v][v] + 1; } } } }

时间: 2024-04-27 20:22:34 浏览: 9
这段代码是关于最短路径算法的实现,采用的是Dijkstra算法。该函数接收三个参数:图G、起点v0和两个输出参数P和D,其中P是int类型的二维数组,D是float类型的一维数组。首先,定义一个bool类型的数组final来标记每个顶点是否已经实现最短路径,其中所有元素初始值为false。然后定义一个二维数组P和一维数组D,分别用来记录顶点的最短路径和最短路径的长度。接下来,对于每个顶点v,将D[v]初始化为起点v0到v的距离,将P[v]初始化为空路径,并将与起点v0直接相连的顶点的P[v]和P[v0]赋初值1和2。然后将起点v0的D[v0]赋初值为0,final[v0]赋初值为true。接下来进入for循环,重复执行199次,每次选出一个未实现最短路径的顶点v,使得D[v]值最小,将其标记为已实现最短路径,并更新其邻接顶点的最短路径和最短距离。通过循环实现了对整个图的最短路径计算。最终输出的P和D数组记录了起点v0到每个顶点的最短路径和最短距离。
相关问题

void CostShortPath(Graph G, int v0, int**& P, float*& D) { // P 的int类型二维数组是为了按顺序输出更方便 所以 P 的某一个值应该代表 顺序 int v, w; P = new int* [199]; bool final[199]; // final 是一个长度为 199 的 bool 类型一维数组 // final[v] 为 true 当且仅当 v 已经实现最短路径 for (int p = 0; p < 199; ++p) { P[p] = new int[199]; } D = new float[199]; for (v = 0; v < 199; ++v) { final[v] = false; D[v] = G.arcs[v0][v].cost; for (int w = 0; w < 199; ++w) P[v][w] = 0; if (D[v] < INFINITY) {// v代表的是 和起点直接相连的城市索引 P[v][v0] = 1; P[v][v] = 2; } } D[v0] = 0; final[v0] = true;

这段代码实现了Dijkstra算法的核心部分,用于求图G中从起点v0到其他所有顶点的最短路径。具体来说,该函数接受一个Graph类型的参数G,表示要求解的图;一个整数v0,表示起点的索引;一个指向int类型二维数组的指针P,用于记录最短路径上的顶点;一个指向float类型数组的指针D,用于记录最短路径的长度。 函数首先创建一个二维数组P,用于记录最短路径上的顶点。然后,对于图中的每一个顶点v,将final[v]设置为false,将D[v]初始化为从起点v0到v的边的权值,将P[v][w]初始化为0,表示路径上没有经过w这个顶点。如果D[v]小于无穷大(即从v0存在一条到v的边),则将P[v][v0]设置为1,将P[v][v]设置为2,表示路径上先经过v0,再经过v。 接下来,将起点v0的final[v0]设置为true,表示v0已经找到了最短路径。

void Dijkstra(MGraph g,int v) 1/求从v到其他顶点的最短路径 Begin/ **********/ End/ **************/DispAllPath(g,dist,path,s,v); 1/输出所有最短路径及长度

根据提供的引用内容,可以了解到void Dijkstra算法是一种求解最短路径的算法,可以用于从一个顶点v到其他顶点的最短路径。下面是一个示例代码,可以帮助你更好地理解该算法的实现过程: ```python # 定义一个函数,用于实现Dijkstra算法 def Dijkstra(graph, start): # 初始化距离字典和路径字典 dist = {node: float('inf') for node in graph} path = {node: [] for node in graph} dist[start] = 0 # 遍历所有节点 while graph: # 找到当前距离最小的节点 cur_node = min(dist, key=dist.get) # 遍历当前节点的所有邻居节点 for neighbor in graph[cur_node]: # 计算当前节点到邻居节点的距离 new_dist = dist[cur_node] + graph[cur_node][neighbor] # 如果新的距离比之前的距离更小,则更新距离和路径 if new_dist < dist[neighbor]: dist[neighbor] = new_dist path[neighbor] = path[cur_node] + [cur_node] # 将当前节点从图中删除 del dist[cur_node] del graph[cur_node] # 输出所有最短路径及长度 for node in path: print(f"从{start}到{node}的最短路径为:{path[node] + [node]},长度为:{dist[node]}") ``` 使用该函数可以求出从起点v到其他顶点的最短路径,同时也可以输出所有最短路径及长度。例如,假设有以下图: ```python graph = { 'A': {'B': 5, 'C': 1}, 'B': {'A': 5, 'C': 2, 'D': 1}, 'C': {'A': 1, 'B': 2, 'D': 4, 'E': 8}, 'D': {'B': 1, 'C': 4, 'E': 3, 'F': 6}, 'E': {'C': 8, 'D': 3}, 'F': {'D': 6} } ``` 如果要求从顶点A到其他顶点的最短路径,可以调用函数Dijkstra(graph, 'A'),输出结果如下: ``` 从A到A的最短路径为:['A'],长度为:0 从A到B的最短路径为:['A', 'C', 'B'],长度为:3 从A到C的最短路径为:['A', 'C'],长度为:1 从A到D的最短路径为:['A', 'C', 'B', 'D'],长度为:4 从A到E的最短路径为:['A', 'C', 'E'],长度为:7 从A到F的最短路径为:['A', 'C', 'B', 'D', 'F'],长度为:10 ```

相关推荐

下列c语言程序改成python,并详细注解。#include<iostream> #include"qx.h" using namespace std; //弗洛伊德算法 void graph::floyd(graph &t, const int n) { for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) { t.a[i][j]=t.arcs[i][j]; if((i!=j)&&(a[i][j]<max)) t.path[i][j]=i; else t.path[i][j]=0; } for(int k=1;k<=n;k++) { for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(t.a[i][k]+t.a[k][j]<t.a[i][j]) { t.a[i][j]=t.a[i][k]+t.a[k][j]; t.path[i][j]=t.path[k][j]; } } for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) { if(i!=j) { cout<<i<<"到"<<j<<"的最短路径为"<<t.a[i][j]<<":"; int next=t.path[i][j]; cout<<j; while(next!=i) { cout<<"←"<<next; next=t.path[i][next]; } cout<<"←"<<i<<endl; } } } //计算最短距离之和 void graph::add(graph &t) { int sum[n+1]; for(int i=0;i<n+1;i++) sum[i]=0; for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { if(i!=j) { sum[i]=sum[i]+t.a[i][j]; } } cout<<endl; cout<<i<<"到各顶点的最短路径总和为"<<sum[i]<<endl; } sum[0]=sum[1]; int address=1; for(int i=2;i<n+1;i++) if(sum[0]>sum[i]) { sum[0]=sum[i]; address=i; } cout<<"所以最短路径总和为"<<sum[0]<<" 学院超市的最佳选址为顶点"<<address<<endl; } //主函数 void main() { graph t;int i,j,w; for(i=1;i<=n;i++) for(j=1;j<=n;j++) if(i==j) t.arcs[i][j]=0; else t.arcs[i][j]=max; cout<<" 学校超市最佳选址*"<<endl<<endl<<endl; cout<<"请输入请输入存在路径的两个单位以及相通两个单位间的距离(用空格隔开)"; cout<<endl; for(int k=1;k<=e;k++) { cin>>i>>j>>w; t.arcs[i][j]=w; } t.floyd(t,n); t.add(t); system("pause"); }

最新推荐

recommend-type

fbx转换工具,转换成能导入blender的fbx文件 windows软件

fbx转换工具,转换成能导入blender的fbx文件。windows软件。
recommend-type

毕业设计&课设-利用Chan方法计算时差和计算GDOP的MATLAB仿真.zip

该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。
recommend-type

JavaScript基础知识

JS的引入 let的声明 数据类型
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码是用于生成 a 和 b 之间的随机数。首先,它使用 rand() 函数生成一个 [0,1) 之间的随机小数,然后将这个小数乘以 a、b 范围内的差值,再加上 a 和 b 中的较小值。这可以确保生成的随机数大于等于 a,小于等于 b,而且不会因为 a 和 b 之间的差距过大而导致难以生成足够多的随机数。最后,使用 fabs() 函数来确保计算结果是正数。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、