能帮我修改一段R代码吗?它是用于对鲍鱼数据进行分析后预测性别的R代码,我希望你把它改成除了随机森林模型外的别的模型的代码,我的R代码如下:# load the data abalone <- read.csv("abalone.data", header = FALSE) # set column names colnames(abalone) <- c("Sex", "Length", "Diameter", "Height", "Whole_weight", "Shucked_weight", "Viscera_weight", "Shell_weight", "Rings") # convert "Sex" variable to a factor abalone$Sex <- as.factor(ifelse(abalone$Sex == "M", "M", "F")) # split the data into training and testing sets set.seed(123) # for reproducibility trainIndex <- sample(1:nrow(abalone), 0.7*nrow(abalone)) train <- abalone[trainIndex,] test <- abalone[-trainIndex,] # build a random forest model using default parameters library(randomForest) rf_model <- randomForest(Rings ~ ., data = train) # make predictions on the testing set rf_pred <- predict(rf_model, newdata = test) # evaluate the performance of the model library(Metrics) rmse <- rmse(rf_pred, test$Rings) mae <- mae(rf_pred, test$Rings) cat("RMSE:", rmse, "\nMAE:", mae) accuracy <- (1 - mae / mean(test$Rings)) * 100 cat("\n预测准确率:", round(accuracy, 2), "%")
时间: 2024-03-30 15:39:33 浏览: 92
python处理UCI鲍鱼数据集
5星 · 资源好评率100%
当然可以帮您修改R代码。您可以选择使用其他机器学习模型来替代随机森林模型,如逻辑回归、决策树、支持向量机等等。下面是适用于逻辑回归模型的修改后的代码:
# load the data
abalone <- read.csv("abalone.data", header = FALSE)
# set column names
colnames(abalone) <- c("Sex", "Length", "Diameter", "Height", "Whole_weight", "Shucked_weight", "Viscera_weight", "Shell_weight", "Rings")
# convert "Sex" variable to a factor
abalone$Sex <- as.factor(ifelse(abalone$Sex == "M", "M", "F"))
# split the data into training and testing sets
set.seed(123) # for reproducibility
trainIndex <- sample(1:nrow(abalone), 0.7*nrow(abalone))
train <- abalone[trainIndex,]
test <- abalone[-trainIndex,]
# build a logistic regression model
model <- glm(Sex ~ Length + Diameter + Height + Whole_weight + Shucked_weight + Viscera_weight + Shell_weight + Rings, data = train, family = binomial(link = 'logit'))
# make predictions on the testing set
pred <- predict(model, newdata = test, type = 'response')
pred <- ifelse(pred > 0.5, 'M', 'F')
# evaluate the performance of the model
library(Metrics)
accuracy <- accuracy(pred, test$Sex)
cat("\n预测准确率:", round(accuracy, 2), "%")
请注意,逻辑回归模型的预测结果是二元分类,所以我们的目标变量从“Rings”变成了“Sex”。另外,我们需要使用“binomial”家族的函数来告诉R我们正在运用逻辑回归模型进行二元分类。
阅读全文