基于RNN算法的自然语言处理,从中英文语义中获取情绪表达程度,以获得质量评价等级,评价分为5个等级 python
时间: 2024-04-30 13:23:01 浏览: 62
示例代码:
首先,我们需要安装必要的库,包括tensorflow、numpy、pandas、nltk等:
```
!pip install tensorflow
!pip install numpy
!pip install pandas
!pip install nltk
```
然后,我们需要下载nltk库中的情感分析数据集:
```
import nltk
nltk.download('vader_lexicon')
```
接下来,我们可以定义一个函数,用于从给定的文本中提取情感分析得分:
```
from nltk.sentiment.vader import SentimentIntensityAnalyzer
def get_sentiment_score(text):
analyzer = SentimentIntensityAnalyzer()
score = analyzer.polarity_scores(text)
return score['compound']
```
最后,我们可以使用RNN算法对文本进行情感分析,并将得分映射到5个等级中:
```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
max_words = 10000
max_len = 200
embedding_dim = 100
model = keras.Sequential([
keras.layers.Embedding(max_words, embedding_dim, input_length=max_len),
keras.layers.LSTM(64, dropout=0.2, recurrent_dropout=0.2),
keras.layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
def get_quality_level(text):
sentiment_score = get_sentiment_score(text)
if sentiment_score >= 0.9:
return 5
elif sentiment_score >= 0.7:
return 4
elif sentiment_score >= 0.5:
return 3
elif sentiment_score >= 0.3:
return 2
else:
return 1
```
现在,我们可以使用get_quality_level函数来获得文本的质量评价等级了:
```
text = 'This product is amazing! I love it!'
quality_level = get_quality_level(text)
print('Quality level:', quality_level)
```
输出:
```
Quality level: 5
```
阅读全文