python 无向图构建欧拉图
时间: 2023-09-11 14:07:21 浏览: 106
构建欧拉图需要满足以下两个条件:
1. 所有节点的度数都是偶数;
2. 图是联通的。
下面是一个示例代码,实现了无向图构建欧拉图的功能:
```python
from collections import defaultdict
class Graph:
def __init__(self):
self.graph = defaultdict(list)
def add_edge(self, u, v):
self.graph[u].append(v)
self.graph[v].append(u)
def is_eulerian(self):
# 判断所有节点的度数是否都是偶数
for node in self.graph:
if len(self.graph[node]) % 2 != 0:
return False
# 检查图是否联通
visited = set()
self.dfs(list(self.graph.keys())[0], visited)
for node in self.graph:
if node not in visited or len(visited) != len(self.graph):
return False
return True
def dfs(self, node, visited):
visited.add(node)
for neighbor in self.graph[node]:
if neighbor not in visited:
self.dfs(neighbor, visited)
def find_eulerian_path(self):
if not self.is_eulerian():
return None
start_node = list(self.graph.keys())[0]
path = []
self.eulerian_path(start_node, path)
return path
def eulerian_path(self, node, path):
while self.graph[node]:
neighbor = self.graph[node].pop()
self.graph[neighbor].remove(node)
self.eulerian_path(neighbor, path)
path.insert(0, node)
g = Graph()
g.add_edge(1, 2)
g.add_edge(1, 4)
g.add_edge(2, 3)
g.add_edge(2, 5)
g.add_edge(3, 4)
g.add_edge(3, 6)
g.add_edge(4, 7)
g.add_edge(5, 6)
g.add_edge(6, 7)
path = g.find_eulerian_path()
if path:
print("欧拉路径为:", path)
else:
print("该图不是欧拉图")
```
这个示例代码中,我们使用了深度优先搜索(DFS)来检查图是否联通,使用递归的方式来构建欧拉路径。如果图不满足欧拉图的条件,则返回 None。如果图是欧拉图,则返回欧拉路径。
阅读全文